Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032033920> ?p ?o ?g. }
- W2032033920 endingPage "441" @default.
- W2032033920 startingPage "419" @default.
- W2032033920 abstract "The Wheeler-DeWitt equation of vacuum geometrodynamics is turned into a Schrodinger equation by imposing the normal Gaussian coordinate conditions with Lagrange multipliers and then restoring the coordinate invariance of the action by parametrization. This procedure corresponds to coupling the gravitational field to a reference fluid. The source appearing in the Einstein law of gravitation has the structure of a heat-conducting dust. When one imposes only the Gaussian time condition but not the Gaussian frame conditions, the heat flow vanishes and the dust becomes incoherent. The canonical description of the fluid uses the Gaussian coordinates and their conjugate momenta as the fluid variables. The energy density and the momentum density of the fluid turn out to be homogeneous linear functions of such momenta. This feature guarantees that the Dirac constraint quantization of the gravitational field coupled to the Gaussian reference fluid leads to a functional Schrodinger equation in Gaussian time. Such an equation possesses the standard positive-definite conserved norm.For a heat-conducting fluid, the states depend on the metric induced on a given hypersurface; for an incoherent dust, they depend only on geometry. It seems natural to interpret the integrand of the norm integral as the probability density for the metric (or the geometry) to have a definite value on a hypersurface specified by the Gaussian clock. Such an interpretation fails because the reference fluid is realistic only if its energy-momentum tensor satisfies the familiar energy conditions. In the canonical theory, the energy conditions become additional constraints on the induced metric and its conjugate momentum. For a heat-conducting dust, the total system of constraints is not first class and cannot be implemented in quantum theory. As a result, the Gaussian coordinates are not determined by physical properties of a realistic material system and the probability density for the metric loses thereby its operational significance. For an incoherent dust, the energy conditions and the dynamical constraints are first class and can be carried over into quantum theory. However, because the geometry operator considered as a multiplication operator does not commute with the energy conditions, the integrand of the norm integral still does not yield the probability density. The interpretation of the Schrodinger geometrodynamics remains viable, but it requires a rather complicated procedure for identifying the fundamental observables. All our considerations admit generalization to other coordinate conditions and other covariant field theories." @default.
- W2032033920 created "2016-06-24" @default.
- W2032033920 creator A5001618740 @default.
- W2032033920 creator A5002515850 @default.
- W2032033920 date "1991-01-15" @default.
- W2032033920 modified "2023-10-03" @default.
- W2032033920 title "Gaussian reference fluid and interpretation of quantum geometrodynamics" @default.
- W2032033920 cites W112294566 @default.
- W2032033920 cites W1675151155 @default.
- W2032033920 cites W175349880 @default.
- W2032033920 cites W1964301336 @default.
- W2032033920 cites W1978652497 @default.
- W2032033920 cites W1982650997 @default.
- W2032033920 cites W1987614177 @default.
- W2032033920 cites W1994846719 @default.
- W2032033920 cites W1997406347 @default.
- W2032033920 cites W1997736387 @default.
- W2032033920 cites W1998203125 @default.
- W2032033920 cites W2012230320 @default.
- W2032033920 cites W2014606383 @default.
- W2032033920 cites W2022209364 @default.
- W2032033920 cites W2022776630 @default.
- W2032033920 cites W2027106837 @default.
- W2032033920 cites W2032266527 @default.
- W2032033920 cites W2037030195 @default.
- W2032033920 cites W2038365242 @default.
- W2032033920 cites W2043260986 @default.
- W2032033920 cites W2044228803 @default.
- W2032033920 cites W2044474553 @default.
- W2032033920 cites W2052180425 @default.
- W2032033920 cites W2053525599 @default.
- W2032033920 cites W2064185701 @default.
- W2032033920 cites W2065194762 @default.
- W2032033920 cites W2076144153 @default.
- W2032033920 cites W2079890182 @default.
- W2032033920 cites W2086731073 @default.
- W2032033920 cites W2095228741 @default.
- W2032033920 cites W2097736497 @default.
- W2032033920 cites W2118357500 @default.
- W2032033920 cites W2124232293 @default.
- W2032033920 cites W2125098298 @default.
- W2032033920 cites W2127175850 @default.
- W2032033920 cites W2130557037 @default.
- W2032033920 cites W2132842944 @default.
- W2032033920 cites W2137128542 @default.
- W2032033920 cites W2142458167 @default.
- W2032033920 cites W2151997703 @default.
- W2032033920 cites W2171611508 @default.
- W2032033920 cites W2171929528 @default.
- W2032033920 cites W2243423914 @default.
- W2032033920 cites W2314212607 @default.
- W2032033920 cites W2468704854 @default.
- W2032033920 cites W4236177012 @default.
- W2032033920 cites W4300928735 @default.
- W2032033920 cites W43399481 @default.
- W2032033920 doi "https://doi.org/10.1103/physrevd.43.419" @default.
- W2032033920 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10013402" @default.
- W2032033920 hasPublicationYear "1991" @default.
- W2032033920 type Work @default.
- W2032033920 sameAs 2032033920 @default.
- W2032033920 citedByCount "134" @default.
- W2032033920 countsByYear W20320339202012 @default.
- W2032033920 countsByYear W20320339202013 @default.
- W2032033920 countsByYear W20320339202014 @default.
- W2032033920 countsByYear W20320339202015 @default.
- W2032033920 countsByYear W20320339202016 @default.
- W2032033920 countsByYear W20320339202017 @default.
- W2032033920 countsByYear W20320339202018 @default.
- W2032033920 countsByYear W20320339202019 @default.
- W2032033920 countsByYear W20320339202020 @default.
- W2032033920 countsByYear W20320339202021 @default.
- W2032033920 countsByYear W20320339202022 @default.
- W2032033920 countsByYear W20320339202023 @default.
- W2032033920 crossrefType "journal-article" @default.
- W2032033920 hasAuthorship W2032033920A5001618740 @default.
- W2032033920 hasAuthorship W2032033920A5002515850 @default.
- W2032033920 hasBestOaLocation W20320339202 @default.
- W2032033920 hasConcept C114410712 @default.
- W2032033920 hasConcept C121332964 @default.
- W2032033920 hasConcept C134306372 @default.
- W2032033920 hasConcept C14257148 @default.
- W2032033920 hasConcept C163716315 @default.
- W2032033920 hasConcept C33923547 @default.
- W2032033920 hasConcept C37914503 @default.
- W2032033920 hasConcept C62520636 @default.
- W2032033920 hasConcept C74650414 @default.
- W2032033920 hasConceptScore W2032033920C114410712 @default.
- W2032033920 hasConceptScore W2032033920C121332964 @default.
- W2032033920 hasConceptScore W2032033920C134306372 @default.
- W2032033920 hasConceptScore W2032033920C14257148 @default.
- W2032033920 hasConceptScore W2032033920C163716315 @default.
- W2032033920 hasConceptScore W2032033920C33923547 @default.
- W2032033920 hasConceptScore W2032033920C37914503 @default.
- W2032033920 hasConceptScore W2032033920C62520636 @default.
- W2032033920 hasConceptScore W2032033920C74650414 @default.
- W2032033920 hasIssue "2" @default.
- W2032033920 hasLocation W20320339201 @default.
- W2032033920 hasLocation W20320339202 @default.