Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032045791> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2032045791 endingPage "709" @default.
- W2032045791 startingPage "683" @default.
- W2032045791 abstract "Many of the basic equations of conservative continuum mechanics (Euler, Vlasov-Poisson, Vlasov-Maxwell, MHD, etc.) are Hamiltonian systems with respect to Lie-Poisson brackets on dual spaces of infinite dimensional Lie algebras. The development of Lie-Poisson integrators for finite dimensional Lie-Poisson systems has shown that they are superior in the numerical simulations of these systems, especially with regard to long term phenomena. This paper shows how to truncate one of these systems, the Vlasov-Poisson equation of plasma physics, to a finite dimensional Lie-Poisson system. This requires replacing the functions on single-particle phase space, with their Poisson bracket Lie algebra structure, by a finite dimensional Lie algebra. Replacing the densities by their moments of order up to k about a fixed reference point corresponds to replacing the functions by their Taylor expansions up to order k. Unfortunately, these truncated Taylor expansions do not form a Lie algebra, since the functions which vanish through order k do not form an ideal under Poisson bracket. Geometrically, this corresponds to the fact that canonical transformations which fix the reference point do not form a normal subgroup. Introducing the location of a reference point in phase space as an extra variable and truncating with respect to this moving point turns out to decouple the “location” from “shape” coordinates of a lump of density in phase space, as far as the Poisson bracket is concerned. One can then replace the shape coordinates by a finite number of moments. The central result of the paper is a construction of the decoupling map described above in the general context of the decomposition of a Lie group as a product of subgroups. The main theorem is first proved by the general theory of Poisson reduction, then by explicit calculation, and lastly by showing that the Poisson isomorphism follows from the lift of a natural groupoid isomorphism. The groupoid aspect of the theory also provides natural Poisson maps, useful in the application of Ruth-type integration techniques, which do not seem easily derivable from the general theory of Poisson reduction. © 1994 John Wiley & Sons, Inc." @default.
- W2032045791 created "2016-06-24" @default.
- W2032045791 creator A5014235664 @default.
- W2032045791 creator A5015708841 @default.
- W2032045791 date "1994-05-01" @default.
- W2032045791 modified "2023-09-26" @default.
- W2032045791 title "Finite dimensional lie-poisson approximations to vlasov-poisson equations" @default.
- W2032045791 cites W1553322733 @default.
- W2032045791 cites W1973293814 @default.
- W2032045791 cites W1973349644 @default.
- W2032045791 cites W1976281603 @default.
- W2032045791 cites W1982125137 @default.
- W2032045791 cites W1986367849 @default.
- W2032045791 cites W1987245127 @default.
- W2032045791 cites W1991238040 @default.
- W2032045791 cites W2006266826 @default.
- W2032045791 cites W2031449918 @default.
- W2032045791 cites W2036025608 @default.
- W2032045791 cites W2039845224 @default.
- W2032045791 cites W2045701663 @default.
- W2032045791 cites W2071874678 @default.
- W2032045791 cites W2073587602 @default.
- W2032045791 cites W2083623028 @default.
- W2032045791 cites W2125433961 @default.
- W2032045791 cites W2163257413 @default.
- W2032045791 cites W2169642648 @default.
- W2032045791 cites W4254948050 @default.
- W2032045791 doi "https://doi.org/10.1002/cpa.3160470505" @default.
- W2032045791 hasPublicationYear "1994" @default.
- W2032045791 type Work @default.
- W2032045791 sameAs 2032045791 @default.
- W2032045791 citedByCount "19" @default.
- W2032045791 countsByYear W20320457912012 @default.
- W2032045791 countsByYear W20320457912015 @default.
- W2032045791 countsByYear W20320457912016 @default.
- W2032045791 countsByYear W20320457912017 @default.
- W2032045791 countsByYear W20320457912023 @default.
- W2032045791 crossrefType "journal-article" @default.
- W2032045791 hasAuthorship W2032045791A5014235664 @default.
- W2032045791 hasAuthorship W2032045791A5015708841 @default.
- W2032045791 hasConcept C100906024 @default.
- W2032045791 hasConcept C105795698 @default.
- W2032045791 hasConcept C121332964 @default.
- W2032045791 hasConcept C126255220 @default.
- W2032045791 hasConcept C130787639 @default.
- W2032045791 hasConcept C134306372 @default.
- W2032045791 hasConcept C151342819 @default.
- W2032045791 hasConcept C155940 @default.
- W2032045791 hasConcept C158946198 @default.
- W2032045791 hasConcept C187915474 @default.
- W2032045791 hasConcept C188845816 @default.
- W2032045791 hasConcept C202444582 @default.
- W2032045791 hasConcept C2777021972 @default.
- W2032045791 hasConcept C3062749 @default.
- W2032045791 hasConcept C33923547 @default.
- W2032045791 hasConcept C51568863 @default.
- W2032045791 hasConcept C62520636 @default.
- W2032045791 hasConceptScore W2032045791C100906024 @default.
- W2032045791 hasConceptScore W2032045791C105795698 @default.
- W2032045791 hasConceptScore W2032045791C121332964 @default.
- W2032045791 hasConceptScore W2032045791C126255220 @default.
- W2032045791 hasConceptScore W2032045791C130787639 @default.
- W2032045791 hasConceptScore W2032045791C134306372 @default.
- W2032045791 hasConceptScore W2032045791C151342819 @default.
- W2032045791 hasConceptScore W2032045791C155940 @default.
- W2032045791 hasConceptScore W2032045791C158946198 @default.
- W2032045791 hasConceptScore W2032045791C187915474 @default.
- W2032045791 hasConceptScore W2032045791C188845816 @default.
- W2032045791 hasConceptScore W2032045791C202444582 @default.
- W2032045791 hasConceptScore W2032045791C2777021972 @default.
- W2032045791 hasConceptScore W2032045791C3062749 @default.
- W2032045791 hasConceptScore W2032045791C33923547 @default.
- W2032045791 hasConceptScore W2032045791C51568863 @default.
- W2032045791 hasConceptScore W2032045791C62520636 @default.
- W2032045791 hasIssue "5" @default.
- W2032045791 hasLocation W20320457911 @default.
- W2032045791 hasOpenAccess W2032045791 @default.
- W2032045791 hasPrimaryLocation W20320457911 @default.
- W2032045791 hasRelatedWork W132983346 @default.
- W2032045791 hasRelatedWork W1632146188 @default.
- W2032045791 hasRelatedWork W1921530130 @default.
- W2032045791 hasRelatedWork W2032045791 @default.
- W2032045791 hasRelatedWork W2077855911 @default.
- W2032045791 hasRelatedWork W2141442782 @default.
- W2032045791 hasRelatedWork W2149205799 @default.
- W2032045791 hasRelatedWork W2463148922 @default.
- W2032045791 hasRelatedWork W2952760921 @default.
- W2032045791 hasRelatedWork W33623953 @default.
- W2032045791 hasVolume "47" @default.
- W2032045791 isParatext "false" @default.
- W2032045791 isRetracted "false" @default.
- W2032045791 magId "2032045791" @default.
- W2032045791 workType "article" @default.