Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032052034> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2032052034 abstract "Linear and Quadratic Discriminant Analysis have been used widely in many areas of data mining, machine learning, and bioinformatics. Friedman proposed a compromise between Linear and Quadratic Discriminant Analysis, called Regularized Discriminant Analysis (RDA), which has been shown to be more flexible in dealing with various class distributions. RDA applies the regularization techniques by employing two regularization parameters, which are chosen to jointly maximize the classification performance. The optimal pair of parameters is commonly estimated via cross-validation from a set of candidate pairs. It is computationally prohibitive for high dimensional data, especially when the candidate set is large, which limits the applications of RDA to low dimensional data.In this paper, a novel algorithm for RDA is presented for high dimensional data. It can estimate the optimal regularization parameters from a large set of parameter candidates efficiently. Experiments on a variety of datasets confirm the claimed theoretical estimate of the efficiency, and also show that, for a properly chosen pair of regularization parameters, RDA performs favorably in classification, in comparison with other existing classification methods." @default.
- W2032052034 created "2016-06-24" @default.
- W2032052034 creator A5010419481 @default.
- W2032052034 creator A5027610116 @default.
- W2032052034 date "2006-08-20" @default.
- W2032052034 modified "2023-10-15" @default.
- W2032052034 title "Regularized discriminant analysis for high dimensional, low sample size data" @default.
- W2032052034 cites W1480376833 @default.
- W2032052034 cites W1966701961 @default.
- W2032052034 cites W1996045038 @default.
- W2032052034 cites W2001619934 @default.
- W2032052034 cites W20027422 @default.
- W2032052034 cites W2009596443 @default.
- W2032052034 cites W2012352340 @default.
- W2032052034 cites W2046649434 @default.
- W2032052034 cites W2074348748 @default.
- W2032052034 cites W2088900896 @default.
- W2032052034 cites W2107246857 @default.
- W2032052034 cites W2109363337 @default.
- W2032052034 cites W2110588405 @default.
- W2032052034 cites W2121647436 @default.
- W2032052034 cites W2138218344 @default.
- W2032052034 cites W2139212933 @default.
- W2032052034 cites W2161419360 @default.
- W2032052034 cites W4234698323 @default.
- W2032052034 doi "https://doi.org/10.1145/1150402.1150453" @default.
- W2032052034 hasPublicationYear "2006" @default.
- W2032052034 type Work @default.
- W2032052034 sameAs 2032052034 @default.
- W2032052034 citedByCount "31" @default.
- W2032052034 countsByYear W20320520342012 @default.
- W2032052034 countsByYear W20320520342013 @default.
- W2032052034 countsByYear W20320520342014 @default.
- W2032052034 countsByYear W20320520342015 @default.
- W2032052034 countsByYear W20320520342016 @default.
- W2032052034 countsByYear W20320520342018 @default.
- W2032052034 countsByYear W20320520342019 @default.
- W2032052034 countsByYear W20320520342020 @default.
- W2032052034 countsByYear W20320520342022 @default.
- W2032052034 countsByYear W20320520342023 @default.
- W2032052034 crossrefType "proceedings-article" @default.
- W2032052034 hasAuthorship W2032052034A5010419481 @default.
- W2032052034 hasAuthorship W2032052034A5027610116 @default.
- W2032052034 hasConcept C104500394 @default.
- W2032052034 hasConcept C11413529 @default.
- W2032052034 hasConcept C119857082 @default.
- W2032052034 hasConcept C12267149 @default.
- W2032052034 hasConcept C124101348 @default.
- W2032052034 hasConcept C129844170 @default.
- W2032052034 hasConcept C153180895 @default.
- W2032052034 hasConcept C154945302 @default.
- W2032052034 hasConcept C2524010 @default.
- W2032052034 hasConcept C2776135515 @default.
- W2032052034 hasConcept C33923547 @default.
- W2032052034 hasConcept C41008148 @default.
- W2032052034 hasConcept C52620605 @default.
- W2032052034 hasConcept C69738355 @default.
- W2032052034 hasConcept C78397625 @default.
- W2032052034 hasConceptScore W2032052034C104500394 @default.
- W2032052034 hasConceptScore W2032052034C11413529 @default.
- W2032052034 hasConceptScore W2032052034C119857082 @default.
- W2032052034 hasConceptScore W2032052034C12267149 @default.
- W2032052034 hasConceptScore W2032052034C124101348 @default.
- W2032052034 hasConceptScore W2032052034C129844170 @default.
- W2032052034 hasConceptScore W2032052034C153180895 @default.
- W2032052034 hasConceptScore W2032052034C154945302 @default.
- W2032052034 hasConceptScore W2032052034C2524010 @default.
- W2032052034 hasConceptScore W2032052034C2776135515 @default.
- W2032052034 hasConceptScore W2032052034C33923547 @default.
- W2032052034 hasConceptScore W2032052034C41008148 @default.
- W2032052034 hasConceptScore W2032052034C52620605 @default.
- W2032052034 hasConceptScore W2032052034C69738355 @default.
- W2032052034 hasConceptScore W2032052034C78397625 @default.
- W2032052034 hasLocation W20320520341 @default.
- W2032052034 hasOpenAccess W2032052034 @default.
- W2032052034 hasPrimaryLocation W20320520341 @default.
- W2032052034 hasRelatedWork W1999647744 @default.
- W2032052034 hasRelatedWork W2063246903 @default.
- W2032052034 hasRelatedWork W2075660794 @default.
- W2032052034 hasRelatedWork W2088711785 @default.
- W2032052034 hasRelatedWork W2350751952 @default.
- W2032052034 hasRelatedWork W2362114017 @default.
- W2032052034 hasRelatedWork W2371177901 @default.
- W2032052034 hasRelatedWork W2374055396 @default.
- W2032052034 hasRelatedWork W2375208160 @default.
- W2032052034 hasRelatedWork W4285246984 @default.
- W2032052034 isParatext "false" @default.
- W2032052034 isRetracted "false" @default.
- W2032052034 magId "2032052034" @default.
- W2032052034 workType "article" @default.