Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032079178> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2032079178 abstract "This paper addresses the problem of traffic engineering (TE) to evaluate the performance of evolutionary algorithms when used as IP routing optimizers and assess the relevance of using gene expression programming (GEP) as a new fine-tuning algorithm in destination- and flow-based TE. We consider a TE scheme where link weights are computed using GEP and used as either fine-tuning parameters in open shortest path first (OSPF ) routing or static routing cost in constraint based routing (CBR ). The resulting OSPF and CBR algorithms are referred to as OSPFgep and CBRgep. The GEP algorithm is based on a hybrid optimisation model where local search complements the global search implemented by classical evolutionary algorithms to improve the genetic individuals fitness through hill-climbing. We apply the newly proposed TE scheme to compute the routing paths for the traffic offered to a 23-, 28- and 30-node test networks under different traffic conditions and differentiated services situations. We evaluate the performance achieved by the OSPFgep, CBRgep algorithms and OSPFma, a destination-based routing algorithm where OSPF path selection is driven by the link weights computed by a memetic algorithm (MA ). We compare the performance achieved by the OSPF gep algorithm to the performance of the OSPFma and OSPF algorithms in a simulated routing environment using NS. We also compare the quality of the paths found by the CBRgep algorithm to the quality of the paths computed by the constraint shortest path first (CSPF ) algorithm when routing bandwidth-guaranteed tunnels using connection-level simulation. Preliminary results reveal the relative efficiency of (1) the OSPFgep algorithm compared to both the OSPFma and OSPF algorithms and (2) the CBRgep algorithm compared to CSPF routing" @default.
- W2032079178 created "2016-06-24" @default.
- W2032079178 creator A5063116320 @default.
- W2032079178 date "2006-01-01" @default.
- W2032079178 modified "2023-09-23" @default.
- W2032079178 title "Traffic Engineering Next Generation IP Networks Using Gene Expression Programming" @default.
- W2032079178 cites W1501347617 @default.
- W2032079178 cites W1651117873 @default.
- W2032079178 cites W1748611583 @default.
- W2032079178 cites W1909766903 @default.
- W2032079178 cites W2096655151 @default.
- W2032079178 cites W2248064281 @default.
- W2032079178 cites W2266557102 @default.
- W2032079178 cites W237152311 @default.
- W2032079178 cites W643567887 @default.
- W2032079178 doi "https://doi.org/10.1109/noms.2006.1687554" @default.
- W2032079178 hasPublicationYear "2006" @default.
- W2032079178 type Work @default.
- W2032079178 sameAs 2032079178 @default.
- W2032079178 citedByCount "3" @default.
- W2032079178 crossrefType "proceedings-article" @default.
- W2032079178 hasAuthorship W2032079178A5063116320 @default.
- W2032079178 hasConcept C104954878 @default.
- W2032079178 hasConcept C11413529 @default.
- W2032079178 hasConcept C115443555 @default.
- W2032079178 hasConcept C120314980 @default.
- W2032079178 hasConcept C126255220 @default.
- W2032079178 hasConcept C154945302 @default.
- W2032079178 hasConcept C204948658 @default.
- W2032079178 hasConcept C29436982 @default.
- W2032079178 hasConcept C31258907 @default.
- W2032079178 hasConcept C33923547 @default.
- W2032079178 hasConcept C41008148 @default.
- W2032079178 hasConcept C6980683 @default.
- W2032079178 hasConcept C70522964 @default.
- W2032079178 hasConcept C74172769 @default.
- W2032079178 hasConcept C89305328 @default.
- W2032079178 hasConceptScore W2032079178C104954878 @default.
- W2032079178 hasConceptScore W2032079178C11413529 @default.
- W2032079178 hasConceptScore W2032079178C115443555 @default.
- W2032079178 hasConceptScore W2032079178C120314980 @default.
- W2032079178 hasConceptScore W2032079178C126255220 @default.
- W2032079178 hasConceptScore W2032079178C154945302 @default.
- W2032079178 hasConceptScore W2032079178C204948658 @default.
- W2032079178 hasConceptScore W2032079178C29436982 @default.
- W2032079178 hasConceptScore W2032079178C31258907 @default.
- W2032079178 hasConceptScore W2032079178C33923547 @default.
- W2032079178 hasConceptScore W2032079178C41008148 @default.
- W2032079178 hasConceptScore W2032079178C6980683 @default.
- W2032079178 hasConceptScore W2032079178C70522964 @default.
- W2032079178 hasConceptScore W2032079178C74172769 @default.
- W2032079178 hasConceptScore W2032079178C89305328 @default.
- W2032079178 hasLocation W20320791781 @default.
- W2032079178 hasOpenAccess W2032079178 @default.
- W2032079178 hasPrimaryLocation W20320791781 @default.
- W2032079178 hasRelatedWork W149510243 @default.
- W2032079178 hasRelatedWork W1790586054 @default.
- W2032079178 hasRelatedWork W1821058766 @default.
- W2032079178 hasRelatedWork W2126117263 @default.
- W2032079178 hasRelatedWork W2139799987 @default.
- W2032079178 hasRelatedWork W2162607606 @default.
- W2032079178 hasRelatedWork W2171804291 @default.
- W2032079178 hasRelatedWork W2366725522 @default.
- W2032079178 hasRelatedWork W2587064233 @default.
- W2032079178 hasRelatedWork W997006250 @default.
- W2032079178 isParatext "false" @default.
- W2032079178 isRetracted "false" @default.
- W2032079178 magId "2032079178" @default.
- W2032079178 workType "article" @default.