Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032134950> ?p ?o ?g. }
- W2032134950 endingPage "305" @default.
- W2032134950 startingPage "295" @default.
- W2032134950 abstract "Organic matter (OM) bound to soil mineral particles (higher-density particles) tends to be more stabilized, enriched in 13C and 15N, and has a lower C:N ratio. Yet how these variations in OM chemistry are linked to the nature of organo-mineral assemblage remains poorly understood, especially in allophanic soils where high amounts of OM are stabilized by interactions with reactive inorganic phases such as short-range-order (SRO) minerals. We thus assessed the extent to which the degree of aggregation and its disruption during fractionation control the distribution and chemistry of the soil organo-mineral particles across six density fractions using a volcanic soil (allophanic Andisol) based on selective dissolution, microscopy (SEM), solid-state 13C NMR spectroscopy and δ13C and δ15N analyses. Intermediate-density fractions (2.0–2.5 g cm− 3) accounted for 63–86% of organic C and N, 73–93% of pyrophosphate-extractable iron and aluminum (Fep, Alp), and 78–95% of oxalate-extractable metals (Feo, Alo) in the bulk soil sample. While air-drying pretreatment had little effect, sonication during fractionation led to (i) fragmentation of both plant detritus and some of the aggregates of 30–100 mm sizes, (ii) release of occluded low-density fraction (< 1.6 g cm− 3) which largely originated from the aggregates of 1.6–2.0 g cm− 3 density range, and (iii) redistribution of organo-mineral particles (15–16% of total OM and 7–19% of the extractable metals) within the intermediate density fractions. Positive correlation of Alp with C:N ratio and negative correlation of Alp with δ15N among the fractions suggest preferential binding of Alp phase (e.g., organo-Al complexes) to decaying plant detritus. Positive correlation of Alo and Feo with δ15N, together with theoretical density calculations of idealistic organo-mineral association modes, suggests that 15N enrichment may be coupled with OM binding to SRO minerals and with the formation of physically-stable aggregates of micron/submicron sizes in accord with our conceptual model (Asano and Wagai, 2014). The general pattern of 13C and 15N enrichment and C:N decline with increasing particle density remained largely unchanged despite the sonication effects detected, indicating that sonication-resistant organo-mineral assemblages largely control the observed patterns. The similarity in the density-dependent changes of OM chemistry between the studied Andisol and the soils with crystalline clay and metal oxide mineralogies in previous studies strongly suggests a common biogeochemical control which deserves further investigation." @default.
- W2032134950 created "2016-06-24" @default.
- W2032134950 creator A5000791286 @default.
- W2032134950 creator A5039977419 @default.
- W2032134950 creator A5072409501 @default.
- W2032134950 creator A5073195143 @default.
- W2032134950 date "2015-03-01" @default.
- W2032134950 modified "2023-10-16" @default.
- W2032134950 title "Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: Is allophanic soil different?" @default.
- W2032134950 cites W1519244282 @default.
- W2032134950 cites W1520812870 @default.
- W2032134950 cites W1537496134 @default.
- W2032134950 cites W1922139594 @default.
- W2032134950 cites W1964424805 @default.
- W2032134950 cites W1973049480 @default.
- W2032134950 cites W1973658913 @default.
- W2032134950 cites W1983133288 @default.
- W2032134950 cites W1985540628 @default.
- W2032134950 cites W1988106191 @default.
- W2032134950 cites W1988619728 @default.
- W2032134950 cites W1989126916 @default.
- W2032134950 cites W1990505667 @default.
- W2032134950 cites W1993660211 @default.
- W2032134950 cites W1995237269 @default.
- W2032134950 cites W1997201800 @default.
- W2032134950 cites W1998243138 @default.
- W2032134950 cites W1998743440 @default.
- W2032134950 cites W2000178951 @default.
- W2032134950 cites W2001984618 @default.
- W2032134950 cites W2005047384 @default.
- W2032134950 cites W2009224855 @default.
- W2032134950 cites W2012773836 @default.
- W2032134950 cites W2030697184 @default.
- W2032134950 cites W2032534685 @default.
- W2032134950 cites W2033536091 @default.
- W2032134950 cites W2036043809 @default.
- W2032134950 cites W2036774733 @default.
- W2032134950 cites W2038222364 @default.
- W2032134950 cites W2040097165 @default.
- W2032134950 cites W2046760544 @default.
- W2032134950 cites W2048213819 @default.
- W2032134950 cites W2054838452 @default.
- W2032134950 cites W2057008966 @default.
- W2032134950 cites W2064915908 @default.
- W2032134950 cites W2075919187 @default.
- W2032134950 cites W2076626791 @default.
- W2032134950 cites W2081369590 @default.
- W2032134950 cites W2081556507 @default.
- W2032134950 cites W2083146153 @default.
- W2032134950 cites W2084480021 @default.
- W2032134950 cites W2087550121 @default.
- W2032134950 cites W2088986846 @default.
- W2032134950 cites W2091479940 @default.
- W2032134950 cites W2097955508 @default.
- W2032134950 cites W2115232352 @default.
- W2032134950 cites W2117350830 @default.
- W2032134950 cites W2121293881 @default.
- W2032134950 cites W2122298899 @default.
- W2032134950 cites W2123567531 @default.
- W2032134950 cites W2123981120 @default.
- W2032134950 cites W2123996576 @default.
- W2032134950 cites W2125908083 @default.
- W2032134950 cites W2132472507 @default.
- W2032134950 cites W2132971553 @default.
- W2032134950 cites W2134020127 @default.
- W2032134950 cites W2142991772 @default.
- W2032134950 cites W2151543090 @default.
- W2032134950 cites W2162256264 @default.
- W2032134950 cites W272657774 @default.
- W2032134950 cites W4211116503 @default.
- W2032134950 doi "https://doi.org/10.1016/j.geoderma.2014.11.028" @default.
- W2032134950 hasPublicationYear "2015" @default.
- W2032134950 type Work @default.
- W2032134950 sameAs 2032134950 @default.
- W2032134950 citedByCount "28" @default.
- W2032134950 countsByYear W20321349502016 @default.
- W2032134950 countsByYear W20321349502018 @default.
- W2032134950 countsByYear W20321349502019 @default.
- W2032134950 countsByYear W20321349502020 @default.
- W2032134950 countsByYear W20321349502021 @default.
- W2032134950 countsByYear W20321349502022 @default.
- W2032134950 crossrefType "journal-article" @default.
- W2032134950 hasAuthorship W2032134950A5000791286 @default.
- W2032134950 hasAuthorship W2032134950A5039977419 @default.
- W2032134950 hasAuthorship W2032134950A5072409501 @default.
- W2032134950 hasAuthorship W2032134950A5073195143 @default.
- W2032134950 hasConcept C107872376 @default.
- W2032134950 hasConcept C111696902 @default.
- W2032134950 hasConcept C127313418 @default.
- W2032134950 hasConcept C150394285 @default.
- W2032134950 hasConcept C159390177 @default.
- W2032134950 hasConcept C159750122 @default.
- W2032134950 hasConcept C178790620 @default.
- W2032134950 hasConcept C182124840 @default.
- W2032134950 hasConcept C184269829 @default.
- W2032134950 hasConcept C185592680 @default.
- W2032134950 hasConcept C186464225 @default.
- W2032134950 hasConcept C199289684 @default.