Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032161710> ?p ?o ?g. }
- W2032161710 endingPage "918" @default.
- W2032161710 startingPage "911" @default.
- W2032161710 abstract "With the deployment of advanced metering infrastructure (AMI), an avalanche of new energy-use information became available. Better understanding of the actual power consumption patterns of customers is critical for improving load forecasting and efficient deployment of smart grid technologies to enhance operation, energy management, and planning of electric power systems. Unlike traditional aggregated system-level load forecasting, the AMI data introduces a fresh perspective to the way load forecasting is performed, ranging from very short-term load forecasting to long-term load forecasting at the system level, regional level, feeder level, or even down to the consumer level. This paper addresses the efforts involved in improving the system level intraday load forecasting by applying clustering to identify groups of customers with similar load consumption patterns from smart meters prior to performing load forecasting." @default.
- W2032161710 created "2016-06-24" @default.
- W2032161710 creator A5024896285 @default.
- W2032161710 creator A5027418501 @default.
- W2032161710 creator A5055217748 @default.
- W2032161710 creator A5060016795 @default.
- W2032161710 creator A5067950969 @default.
- W2032161710 date "2015-03-01" @default.
- W2032161710 modified "2023-10-17" @default.
- W2032161710 title "Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting Considering Customer Behavior Similarities" @default.
- W2032161710 cites W1594924988 @default.
- W2032161710 cites W1985815014 @default.
- W2032161710 cites W1989866797 @default.
- W2032161710 cites W1991414280 @default.
- W2032161710 cites W2011430131 @default.
- W2032161710 cites W2019765022 @default.
- W2032161710 cites W2019949418 @default.
- W2032161710 cites W2020399066 @default.
- W2032161710 cites W2029403485 @default.
- W2032161710 cites W2044186388 @default.
- W2032161710 cites W2064650039 @default.
- W2032161710 cites W2066384055 @default.
- W2032161710 cites W2070198522 @default.
- W2032161710 cites W2071258353 @default.
- W2032161710 cites W2078019988 @default.
- W2032161710 cites W2108447256 @default.
- W2032161710 cites W2151767444 @default.
- W2032161710 cites W2152271106 @default.
- W2032161710 cites W2168285483 @default.
- W2032161710 cites W2171878998 @default.
- W2032161710 cites W2569074059 @default.
- W2032161710 cites W2569241116 @default.
- W2032161710 cites W3126081667 @default.
- W2032161710 doi "https://doi.org/10.1109/tsg.2014.2364233" @default.
- W2032161710 hasPublicationYear "2015" @default.
- W2032161710 type Work @default.
- W2032161710 sameAs 2032161710 @default.
- W2032161710 citedByCount "365" @default.
- W2032161710 countsByYear W20321617102014 @default.
- W2032161710 countsByYear W20321617102015 @default.
- W2032161710 countsByYear W20321617102016 @default.
- W2032161710 countsByYear W20321617102017 @default.
- W2032161710 countsByYear W20321617102018 @default.
- W2032161710 countsByYear W20321617102019 @default.
- W2032161710 countsByYear W20321617102020 @default.
- W2032161710 countsByYear W20321617102021 @default.
- W2032161710 countsByYear W20321617102022 @default.
- W2032161710 countsByYear W20321617102023 @default.
- W2032161710 crossrefType "journal-article" @default.
- W2032161710 hasAuthorship W2032161710A5024896285 @default.
- W2032161710 hasAuthorship W2032161710A5027418501 @default.
- W2032161710 hasAuthorship W2032161710A5055217748 @default.
- W2032161710 hasAuthorship W2032161710A5060016795 @default.
- W2032161710 hasAuthorship W2032161710A5067950969 @default.
- W2032161710 hasConcept C105339364 @default.
- W2032161710 hasConcept C10558101 @default.
- W2032161710 hasConcept C111919701 @default.
- W2032161710 hasConcept C119599485 @default.
- W2032161710 hasConcept C121332964 @default.
- W2032161710 hasConcept C127413603 @default.
- W2032161710 hasConcept C138959212 @default.
- W2032161710 hasConcept C154945302 @default.
- W2032161710 hasConcept C163258240 @default.
- W2032161710 hasConcept C187691185 @default.
- W2032161710 hasConcept C193809577 @default.
- W2032161710 hasConcept C206658404 @default.
- W2032161710 hasConcept C2524010 @default.
- W2032161710 hasConcept C2777908891 @default.
- W2032161710 hasConcept C2779370713 @default.
- W2032161710 hasConcept C2779438525 @default.
- W2032161710 hasConcept C2779510800 @default.
- W2032161710 hasConcept C2780165032 @default.
- W2032161710 hasConcept C30905978 @default.
- W2032161710 hasConcept C33923547 @default.
- W2032161710 hasConcept C41008148 @default.
- W2032161710 hasConcept C42475967 @default.
- W2032161710 hasConcept C555944384 @default.
- W2032161710 hasConcept C61797465 @default.
- W2032161710 hasConcept C62520636 @default.
- W2032161710 hasConcept C67172668 @default.
- W2032161710 hasConcept C73555534 @default.
- W2032161710 hasConcept C76155785 @default.
- W2032161710 hasConcept C78519656 @default.
- W2032161710 hasConcept C79403827 @default.
- W2032161710 hasConcept C89227174 @default.
- W2032161710 hasConcept C93763578 @default.
- W2032161710 hasConceptScore W2032161710C105339364 @default.
- W2032161710 hasConceptScore W2032161710C10558101 @default.
- W2032161710 hasConceptScore W2032161710C111919701 @default.
- W2032161710 hasConceptScore W2032161710C119599485 @default.
- W2032161710 hasConceptScore W2032161710C121332964 @default.
- W2032161710 hasConceptScore W2032161710C127413603 @default.
- W2032161710 hasConceptScore W2032161710C138959212 @default.
- W2032161710 hasConceptScore W2032161710C154945302 @default.
- W2032161710 hasConceptScore W2032161710C163258240 @default.
- W2032161710 hasConceptScore W2032161710C187691185 @default.
- W2032161710 hasConceptScore W2032161710C193809577 @default.
- W2032161710 hasConceptScore W2032161710C206658404 @default.