Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032191516> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2032191516 endingPage "118" @default.
- W2032191516 startingPage "106" @default.
- W2032191516 abstract "Several probability-based design codes (e.g., load and resistance factor design (LRFD) codes and Eurocode 7) have been developed and implemented around the world recently. A characteristic (or nominal) value of soil/rock properties is used in these design codes, and it is typically defined as a pre-specified quantile (e.g., mean or lower 5% quantile) of the statistical distribution of the soil properties. This poses a challenge in the implementation of the design codes, because the number of soil/rock property data obtained during site investigation is generally too sparse to generate meaningful statistics, rendering proper selection of the characteristic value a very difficult task. This paper aims to address this challenge by developing a Markov Chain Monte Carlo Simulation (MCMCS)-based approach for probabilistic characterization of undrained Young's modulus, E u , of clay using standard penetration tests (SPT). Prior knowledge (e.g., previous engineering experience) and project-specific test data (e.g., SPT test data) are integrated probabilistically under a Bayesian framework and transformed into a large number, as many as needed, of equivalent samples of E u . Subsequently, conventional statistical analysis is carried out to estimate statistics of E u , and the characteristic value of the soil property is selected accordingly. Equations are derived for the proposed approach, and it is illustrated and validated using real SPT and pressuremeter test data at the clay site of the US National Geotechnical Experimentation Sites (NGES) at Texas A&M University. • We develop an approach to obtain meaningful statistics from limited soil/rock data. • Such statistics are required in geotechnical reliability analysis/design. • The approach is based on Bayes’ Theorem and Markov Chain Monte Carlo simulation. • It is illustrated and validated using both real observation and simulation data. • The approach is particularly beneficial for projects with medium/ small sizes." @default.
- W2032191516 created "2016-06-24" @default.
- W2032191516 creator A5001995018 @default.
- W2032191516 creator A5017731648 @default.
- W2032191516 date "2013-06-01" @default.
- W2032191516 modified "2023-10-14" @default.
- W2032191516 title "Probabilistic characterization of Young's modulus of soil using equivalent samples" @default.
- W2032191516 cites W1964725796 @default.
- W2032191516 cites W1965758816 @default.
- W2032191516 cites W1965992523 @default.
- W2032191516 cites W1966837944 @default.
- W2032191516 cites W1977553044 @default.
- W2032191516 cites W1992364977 @default.
- W2032191516 cites W2003217687 @default.
- W2032191516 cites W2009691446 @default.
- W2032191516 cites W2019661316 @default.
- W2032191516 cites W2020427525 @default.
- W2032191516 cites W2025114372 @default.
- W2032191516 cites W2027630655 @default.
- W2032191516 cites W2028632562 @default.
- W2032191516 cites W2038817616 @default.
- W2032191516 cites W2042070248 @default.
- W2032191516 cites W2042974126 @default.
- W2032191516 cites W2047831936 @default.
- W2032191516 cites W2049694987 @default.
- W2032191516 cites W2056226235 @default.
- W2032191516 cites W2056760934 @default.
- W2032191516 cites W2062044838 @default.
- W2032191516 cites W2074123001 @default.
- W2032191516 cites W2075090910 @default.
- W2032191516 cites W2080069982 @default.
- W2032191516 cites W2083910000 @default.
- W2032191516 cites W2100365040 @default.
- W2032191516 cites W2109790965 @default.
- W2032191516 cites W2115850052 @default.
- W2032191516 cites W2118549468 @default.
- W2032191516 cites W2124037584 @default.
- W2032191516 cites W2129955653 @default.
- W2032191516 cites W2138309709 @default.
- W2032191516 cites W2141450630 @default.
- W2032191516 cites W2145185680 @default.
- W2032191516 cites W2183893167 @default.
- W2032191516 cites W4245415856 @default.
- W2032191516 doi "https://doi.org/10.1016/j.enggeo.2013.03.017" @default.
- W2032191516 hasPublicationYear "2013" @default.
- W2032191516 type Work @default.
- W2032191516 sameAs 2032191516 @default.
- W2032191516 citedByCount "158" @default.
- W2032191516 countsByYear W20321915162013 @default.
- W2032191516 countsByYear W20321915162014 @default.
- W2032191516 countsByYear W20321915162015 @default.
- W2032191516 countsByYear W20321915162016 @default.
- W2032191516 countsByYear W20321915162017 @default.
- W2032191516 countsByYear W20321915162018 @default.
- W2032191516 countsByYear W20321915162019 @default.
- W2032191516 countsByYear W20321915162020 @default.
- W2032191516 countsByYear W20321915162021 @default.
- W2032191516 countsByYear W20321915162022 @default.
- W2032191516 countsByYear W20321915162023 @default.
- W2032191516 crossrefType "journal-article" @default.
- W2032191516 hasAuthorship W2032191516A5001995018 @default.
- W2032191516 hasAuthorship W2032191516A5017731648 @default.
- W2032191516 hasConcept C105795698 @default.
- W2032191516 hasConcept C107673813 @default.
- W2032191516 hasConcept C118671147 @default.
- W2032191516 hasConcept C127413603 @default.
- W2032191516 hasConcept C187320778 @default.
- W2032191516 hasConcept C33923547 @default.
- W2032191516 hasConcept C41008148 @default.
- W2032191516 hasConcept C49937458 @default.
- W2032191516 hasConceptScore W2032191516C105795698 @default.
- W2032191516 hasConceptScore W2032191516C107673813 @default.
- W2032191516 hasConceptScore W2032191516C118671147 @default.
- W2032191516 hasConceptScore W2032191516C127413603 @default.
- W2032191516 hasConceptScore W2032191516C187320778 @default.
- W2032191516 hasConceptScore W2032191516C33923547 @default.
- W2032191516 hasConceptScore W2032191516C41008148 @default.
- W2032191516 hasConceptScore W2032191516C49937458 @default.
- W2032191516 hasLocation W20321915161 @default.
- W2032191516 hasOpenAccess W2032191516 @default.
- W2032191516 hasPrimaryLocation W20321915161 @default.
- W2032191516 hasRelatedWork W1575659177 @default.
- W2032191516 hasRelatedWork W2052558588 @default.
- W2032191516 hasRelatedWork W2059186684 @default.
- W2032191516 hasRelatedWork W2091694095 @default.
- W2032191516 hasRelatedWork W2114668360 @default.
- W2032191516 hasRelatedWork W2525669318 @default.
- W2032191516 hasRelatedWork W2899084033 @default.
- W2032191516 hasRelatedWork W3036627630 @default.
- W2032191516 hasRelatedWork W4290792893 @default.
- W2032191516 hasRelatedWork W4312560394 @default.
- W2032191516 hasVolume "159" @default.
- W2032191516 isParatext "false" @default.
- W2032191516 isRetracted "false" @default.
- W2032191516 magId "2032191516" @default.
- W2032191516 workType "article" @default.