Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032484416> ?p ?o ?g. }
- W2032484416 endingPage "023015" @default.
- W2032484416 startingPage "023015" @default.
- W2032484416 abstract "Facial expressions are an important demonstration of humanity’s humors and emotions. Algorithms capable of recognizing facial expressions and associating them with emotions were developed and employed to compare the expressions that different cultural groups use to show their emotions. Static pictures of predominantly occidental and oriental subjects from public datasets were used to train machine learning algorithms, whereas local binary patterns, histogram of oriented gradients (HOGs), and Gabor filters were employed to describe the facial expressions for six different basic emotions. The most consistent combination, formed by the association of HOG filter and support vector machines, was then used to classify the other cultural group: there was a strong drop in accuracy, meaning that the subtle differences of facial expressions of each culture affected the classifier performance. Finally, a classifier was trained with images from both occidental and oriental subjects and its accuracy was higher on multicultural data, evidencing the need of a multicultural training set to build an efficient classifier." @default.
- W2032484416 created "2016-06-24" @default.
- W2032484416 creator A5054279264 @default.
- W2032484416 creator A5065725754 @default.
- W2032484416 date "2015-03-19" @default.
- W2032484416 modified "2023-10-02" @default.
- W2032484416 title "Effects of cultural characteristics on building an emotion classifier through facial expression analysis" @default.
- W2032484416 cites W13187899 @default.
- W2032484416 cites W1491105865 @default.
- W2032484416 cites W1502588390 @default.
- W2032484416 cites W1545641654 @default.
- W2032484416 cites W1566413196 @default.
- W2032484416 cites W1568068040 @default.
- W2032484416 cites W171902450 @default.
- W2032484416 cites W1913860614 @default.
- W2032484416 cites W193113782 @default.
- W2032484416 cites W1966512492 @default.
- W2032484416 cites W1968600824 @default.
- W2032484416 cites W1969030392 @default.
- W2032484416 cites W1970645982 @default.
- W2032484416 cites W1981918162 @default.
- W2032484416 cites W1984354005 @default.
- W2032484416 cites W1985872457 @default.
- W2032484416 cites W1986803802 @default.
- W2032484416 cites W1991219878 @default.
- W2032484416 cites W1999042468 @default.
- W2032484416 cites W2004579865 @default.
- W2032484416 cites W2007428563 @default.
- W2032484416 cites W2015212590 @default.
- W2032484416 cites W2016485878 @default.
- W2032484416 cites W2022068631 @default.
- W2032484416 cites W2024221294 @default.
- W2032484416 cites W2024868105 @default.
- W2032484416 cites W202794677 @default.
- W2032484416 cites W2034438009 @default.
- W2032484416 cites W2035372623 @default.
- W2032484416 cites W2039866355 @default.
- W2032484416 cites W2044188769 @default.
- W2032484416 cites W2046677541 @default.
- W2032484416 cites W2053437444 @default.
- W2032484416 cites W2054493438 @default.
- W2032484416 cites W2058098602 @default.
- W2032484416 cites W2060312700 @default.
- W2032484416 cites W2063603851 @default.
- W2032484416 cites W2069190036 @default.
- W2032484416 cites W2096044434 @default.
- W2032484416 cites W2100560442 @default.
- W2032484416 cites W2102998034 @default.
- W2032484416 cites W2107830184 @default.
- W2032484416 cites W2108333036 @default.
- W2032484416 cites W2108375645 @default.
- W2032484416 cites W2114449149 @default.
- W2032484416 cites W2115136130 @default.
- W2032484416 cites W2119586505 @default.
- W2032484416 cites W2125127226 @default.
- W2032484416 cites W2127757833 @default.
- W2032484416 cites W2129106196 @default.
- W2032484416 cites W2130571344 @default.
- W2032484416 cites W2132254548 @default.
- W2032484416 cites W2133368777 @default.
- W2032484416 cites W2134860945 @default.
- W2032484416 cites W2136063698 @default.
- W2032484416 cites W2139594308 @default.
- W2032484416 cites W2139900086 @default.
- W2032484416 cites W2139916508 @default.
- W2032484416 cites W2141990597 @default.
- W2032484416 cites W2143829622 @default.
- W2032484416 cites W2145310492 @default.
- W2032484416 cites W2149563102 @default.
- W2032484416 cites W2153635508 @default.
- W2032484416 cites W2154611638 @default.
- W2032484416 cites W2154978859 @default.
- W2032484416 cites W2156503193 @default.
- W2032484416 cites W2156535097 @default.
- W2032484416 cites W2158695872 @default.
- W2032484416 cites W2178605697 @default.
- W2032484416 cites W2183286040 @default.
- W2032484416 cites W2185938598 @default.
- W2032484416 cites W2322330612 @default.
- W2032484416 cites W2339805410 @default.
- W2032484416 cites W2397385686 @default.
- W2032484416 cites W2946287218 @default.
- W2032484416 cites W2963325986 @default.
- W2032484416 cites W3099514962 @default.
- W2032484416 doi "https://doi.org/10.1117/1.jei.24.2.023015" @default.
- W2032484416 hasPublicationYear "2015" @default.
- W2032484416 type Work @default.
- W2032484416 sameAs 2032484416 @default.
- W2032484416 citedByCount "27" @default.
- W2032484416 countsByYear W20324844162016 @default.
- W2032484416 countsByYear W20324844162017 @default.
- W2032484416 countsByYear W20324844162018 @default.
- W2032484416 countsByYear W20324844162019 @default.
- W2032484416 countsByYear W20324844162020 @default.
- W2032484416 countsByYear W20324844162021 @default.
- W2032484416 countsByYear W20324844162022 @default.
- W2032484416 countsByYear W20324844162023 @default.
- W2032484416 crossrefType "journal-article" @default.