Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032497224> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2032497224 abstract "Recently multi-label learning has attracted the attention of a lot of researchers in machine learning field. Many algorithms have been proposed. The main stream of multi-label learning is the research on how to boost predicting performance using label correlations. However, these methods ignore the importance of feature vectors. Recent study explores to use feature vectors and label vectors collaboratively. This paper proposes a simple but effective algorithm ML-LEC (Multi-label Learning based on Label Entropy guided Clustering). It first performs clustering with the number of clusters set by label entropy adaptively for each label. New features are constructed from the original feature vectors by querying the clustering result. Then, models are obtained by using ordinary classification algorithm. Experiments on several data sets from different application domains verify the superiority of the proposed algorithm to some baseline and the state-of-art ones." @default.
- W2032497224 created "2016-06-24" @default.
- W2032497224 creator A5002286022 @default.
- W2032497224 creator A5035339773 @default.
- W2032497224 creator A5076548895 @default.
- W2032497224 date "2014-09-01" @default.
- W2032497224 modified "2023-09-24" @default.
- W2032497224 title "Multi-Label Learning Based on Label Entropy Guided Clustering" @default.
- W2032497224 cites W1953606363 @default.
- W2032497224 cites W1999954155 @default.
- W2032497224 cites W2027869746 @default.
- W2032497224 cites W2030585921 @default.
- W2032497224 cites W2042759724 @default.
- W2032497224 cites W2052684427 @default.
- W2032497224 cites W2053463056 @default.
- W2032497224 cites W2084802027 @default.
- W2032497224 cites W2090630554 @default.
- W2032497224 cites W2099330554 @default.
- W2032497224 cites W2129026672 @default.
- W2032497224 cites W2137107481 @default.
- W2032497224 cites W2142827986 @default.
- W2032497224 cites W2153635508 @default.
- W2032497224 cites W2156935079 @default.
- W2032497224 cites W2166912588 @default.
- W2032497224 cites W2176228818 @default.
- W2032497224 cites W254202083 @default.
- W2032497224 cites W2542840256 @default.
- W2032497224 cites W55768394 @default.
- W2032497224 doi "https://doi.org/10.1109/cit.2014.65" @default.
- W2032497224 hasPublicationYear "2014" @default.
- W2032497224 type Work @default.
- W2032497224 sameAs 2032497224 @default.
- W2032497224 citedByCount "0" @default.
- W2032497224 crossrefType "proceedings-article" @default.
- W2032497224 hasAuthorship W2032497224A5002286022 @default.
- W2032497224 hasAuthorship W2032497224A5035339773 @default.
- W2032497224 hasAuthorship W2032497224A5076548895 @default.
- W2032497224 hasConcept C106301342 @default.
- W2032497224 hasConcept C119857082 @default.
- W2032497224 hasConcept C121332964 @default.
- W2032497224 hasConcept C124101348 @default.
- W2032497224 hasConcept C138885662 @default.
- W2032497224 hasConcept C153180895 @default.
- W2032497224 hasConcept C154945302 @default.
- W2032497224 hasConcept C2776401178 @default.
- W2032497224 hasConcept C2776482837 @default.
- W2032497224 hasConcept C41008148 @default.
- W2032497224 hasConcept C41895202 @default.
- W2032497224 hasConcept C62520636 @default.
- W2032497224 hasConcept C73555534 @default.
- W2032497224 hasConcept C83665646 @default.
- W2032497224 hasConceptScore W2032497224C106301342 @default.
- W2032497224 hasConceptScore W2032497224C119857082 @default.
- W2032497224 hasConceptScore W2032497224C121332964 @default.
- W2032497224 hasConceptScore W2032497224C124101348 @default.
- W2032497224 hasConceptScore W2032497224C138885662 @default.
- W2032497224 hasConceptScore W2032497224C153180895 @default.
- W2032497224 hasConceptScore W2032497224C154945302 @default.
- W2032497224 hasConceptScore W2032497224C2776401178 @default.
- W2032497224 hasConceptScore W2032497224C2776482837 @default.
- W2032497224 hasConceptScore W2032497224C41008148 @default.
- W2032497224 hasConceptScore W2032497224C41895202 @default.
- W2032497224 hasConceptScore W2032497224C62520636 @default.
- W2032497224 hasConceptScore W2032497224C73555534 @default.
- W2032497224 hasConceptScore W2032497224C83665646 @default.
- W2032497224 hasLocation W20324972241 @default.
- W2032497224 hasOpenAccess W2032497224 @default.
- W2032497224 hasPrimaryLocation W20324972241 @default.
- W2032497224 hasRelatedWork W1156270210 @default.
- W2032497224 hasRelatedWork W1965670643 @default.
- W2032497224 hasRelatedWork W1989382833 @default.
- W2032497224 hasRelatedWork W2003032988 @default.
- W2032497224 hasRelatedWork W2035282108 @default.
- W2032497224 hasRelatedWork W2039871688 @default.
- W2032497224 hasRelatedWork W2051715680 @default.
- W2032497224 hasRelatedWork W2054855770 @default.
- W2032497224 hasRelatedWork W2117910203 @default.
- W2032497224 hasRelatedWork W2119258299 @default.
- W2032497224 hasRelatedWork W2550305434 @default.
- W2032497224 hasRelatedWork W2701101876 @default.
- W2032497224 hasRelatedWork W2785273604 @default.
- W2032497224 hasRelatedWork W2789311762 @default.
- W2032497224 hasRelatedWork W2963042850 @default.
- W2032497224 hasRelatedWork W2964297678 @default.
- W2032497224 hasRelatedWork W3082027691 @default.
- W2032497224 hasRelatedWork W3156546054 @default.
- W2032497224 hasRelatedWork W3204458818 @default.
- W2032497224 hasRelatedWork W3028179031 @default.
- W2032497224 isParatext "false" @default.
- W2032497224 isRetracted "false" @default.
- W2032497224 magId "2032497224" @default.
- W2032497224 workType "article" @default.