Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032579240> ?p ?o ?g. }
- W2032579240 endingPage "39" @default.
- W2032579240 startingPage "1" @default.
- W2032579240 abstract "Inverse frequent set mining (IFM) is the problem of computing a transaction database D satisfying given support constraints for some itemsets, which are typically the frequent ones. This article proposes a new formulation of IFM, called IFM I (IFM with infrequency constraints ), where the itemsets that are not listed as frequent are constrained to be infrequent; that is, they must have a support less than or equal to a specified unique threshold. An instance of IFM I can be seen as an instance of the original IFM by making explicit the infrequency constraints for the minimal infrequent itemsets, corresponding to the so-called negative generator border defined in the literature. The complexity increase from PSPACE (complexity of IFM) to NEXP (complexity of IFM I ) is caused by the cardinality of the negative generator border, which can be exponential in the original input size. Therefore, the article introduces a specific problem parameter κ that computes an upper bound to this cardinality using a hypergraph interpretation for which minimal infrequent itemsets correspond to minimal transversals. By fixing a constant k , the article formulates a k -bounded definition of the problem, called k -IFM I , that collects all instances for which the value of the parameter κ is less than or equal to k —its complexity is in PSPACE as for IFM. The bounded problem is encoded as an integer linear program with a large number of variables (actually exponential w.r.t. the number of constraints), which is thereafter approximated by relaxing integer constraints—the decision problem of solving the linear program is proven to be in NP. In order to solve the linear program, a column generation technique is used that is a variation of the simplex method designed to solve large-scale linear programs, in particular with a huge number of variables. The method at each step requires the solution of an auxiliary integer linear program, which is proven to be NP hard in this case and for which a greedy heuristic is presented. The resulting overall column generation solution algorithm enjoys very good scaling as evidenced by the intensive experimentation, thereby paving the way for its application in real-life scenarios." @default.
- W2032579240 created "2016-06-24" @default.
- W2032579240 creator A5009094578 @default.
- W2032579240 creator A5011937230 @default.
- W2032579240 creator A5052111624 @default.
- W2032579240 creator A5059697535 @default.
- W2032579240 date "2013-11-01" @default.
- W2032579240 modified "2023-10-18" @default.
- W2032579240 title "Solving inverse frequent itemset mining with infrequency constraints via large-scale linear programs" @default.
- W2032579240 cites W1492330052 @default.
- W2032579240 cites W1499019819 @default.
- W2032579240 cites W1605132481 @default.
- W2032579240 cites W1965392447 @default.
- W2032579240 cites W1970217287 @default.
- W2032579240 cites W1972004026 @default.
- W2032579240 cites W1999602050 @default.
- W2032579240 cites W2007278728 @default.
- W2032579240 cites W2023612196 @default.
- W2032579240 cites W2026797055 @default.
- W2032579240 cites W2026815944 @default.
- W2032579240 cites W2054784808 @default.
- W2032579240 cites W2060917063 @default.
- W2032579240 cites W2061100700 @default.
- W2032579240 cites W2072764742 @default.
- W2032579240 cites W2078937669 @default.
- W2032579240 cites W2080947358 @default.
- W2032579240 cites W2091095338 @default.
- W2032579240 cites W2099019567 @default.
- W2032579240 cites W2110868467 @default.
- W2032579240 cites W2110893883 @default.
- W2032579240 cites W2113233913 @default.
- W2032579240 cites W2115799663 @default.
- W2032579240 cites W2120055178 @default.
- W2032579240 cites W2125227861 @default.
- W2032579240 cites W2129555316 @default.
- W2032579240 cites W2130099852 @default.
- W2032579240 cites W2149896190 @default.
- W2032579240 cites W2161033190 @default.
- W2032579240 cites W2161229593 @default.
- W2032579240 cites W2163277407 @default.
- W2032579240 cites W2169245654 @default.
- W2032579240 cites W2611147814 @default.
- W2032579240 cites W2963908121 @default.
- W2032579240 cites W4241051765 @default.
- W2032579240 cites W4248358572 @default.
- W2032579240 cites W4292230561 @default.
- W2032579240 doi "https://doi.org/10.1145/2541268.2541271" @default.
- W2032579240 hasPublicationYear "2013" @default.
- W2032579240 type Work @default.
- W2032579240 sameAs 2032579240 @default.
- W2032579240 citedByCount "15" @default.
- W2032579240 countsByYear W20325792402012 @default.
- W2032579240 countsByYear W20325792402013 @default.
- W2032579240 countsByYear W20325792402015 @default.
- W2032579240 countsByYear W20325792402016 @default.
- W2032579240 countsByYear W20325792402017 @default.
- W2032579240 countsByYear W20325792402018 @default.
- W2032579240 countsByYear W20325792402019 @default.
- W2032579240 countsByYear W20325792402021 @default.
- W2032579240 countsByYear W20325792402022 @default.
- W2032579240 crossrefType "journal-article" @default.
- W2032579240 hasAuthorship W2032579240A5009094578 @default.
- W2032579240 hasAuthorship W2032579240A5011937230 @default.
- W2032579240 hasAuthorship W2032579240A5052111624 @default.
- W2032579240 hasAuthorship W2032579240A5059697535 @default.
- W2032579240 hasConcept C11413529 @default.
- W2032579240 hasConcept C114614502 @default.
- W2032579240 hasConcept C118615104 @default.
- W2032579240 hasConcept C121332964 @default.
- W2032579240 hasConcept C124101348 @default.
- W2032579240 hasConcept C134306372 @default.
- W2032579240 hasConcept C163258240 @default.
- W2032579240 hasConcept C179799912 @default.
- W2032579240 hasConcept C197685441 @default.
- W2032579240 hasConcept C199360897 @default.
- W2032579240 hasConcept C207467116 @default.
- W2032579240 hasConcept C2524010 @default.
- W2032579240 hasConcept C2777027219 @default.
- W2032579240 hasConcept C2780992000 @default.
- W2032579240 hasConcept C33923547 @default.
- W2032579240 hasConcept C34388435 @default.
- W2032579240 hasConcept C41008148 @default.
- W2032579240 hasConcept C62520636 @default.
- W2032579240 hasConcept C77553402 @default.
- W2032579240 hasConcept C87117476 @default.
- W2032579240 hasConcept C97137487 @default.
- W2032579240 hasConceptScore W2032579240C11413529 @default.
- W2032579240 hasConceptScore W2032579240C114614502 @default.
- W2032579240 hasConceptScore W2032579240C118615104 @default.
- W2032579240 hasConceptScore W2032579240C121332964 @default.
- W2032579240 hasConceptScore W2032579240C124101348 @default.
- W2032579240 hasConceptScore W2032579240C134306372 @default.
- W2032579240 hasConceptScore W2032579240C163258240 @default.
- W2032579240 hasConceptScore W2032579240C179799912 @default.
- W2032579240 hasConceptScore W2032579240C197685441 @default.
- W2032579240 hasConceptScore W2032579240C199360897 @default.
- W2032579240 hasConceptScore W2032579240C207467116 @default.
- W2032579240 hasConceptScore W2032579240C2524010 @default.