Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032596857> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2032596857 endingPage "548" @default.
- W2032596857 startingPage "501" @default.
- W2032596857 abstract "This paper is concerned with differential equations of the form d 2 w/dz 2 = {u 2 f(u,z) +g(u,z)}w in which u is a positive parameter and z is a complex variable ranging over a simply connected open domain D that is not necessarily one-sheeted, and may be bounded or unbounded. In the first part we assume that for each value of u the function (z-c) 2-m f(u,z) is holomorphic and non-vanishing throughout D , where c is an interior point of D and m is a positive constant. It is also assumed that g(u, z) is holomorphic in D , punctured at c , and g(u,z) = 0{(z -c) γ-1 } as z→c, where γ is another positive constant. Thus c is a fractional transition point of the differential equation of multiplicity (or order) m -2, and there are no other transition points in D . Uniform asymptotic approximations for the solutions, when u is large, are constructed in terms of Bessel functions of order 1/ m , complete with error bounds. In the second part the Bessel function approximants are replaced by their uniform asymptotic approximations for large argument, yielding the connection formulae for the Liouville-Green (or J.W.K.B.) approximations to the solutions, again complete with error bounds. These results are then applied to solve the general problem of connecting the Liouville-Green approximations when D contains any (finite) number of transition points of arbitrary multiplicities, integral or fractional. The third, and concluding, part illustrates the theory by means of three examples. An appendix describes a numerical method for the automatic computation and plotting of the boundary curves of the Liouville-Green approximations, defined by Rc********** where c again denotes a transition point." @default.
- W2032596857 created "2016-06-24" @default.
- W2032596857 creator A5015630594 @default.
- W2032596857 date "1978-07-27" @default.
- W2032596857 modified "2023-10-16" @default.
- W2032596857 title "General connection formulae for Liouville-Green approximations in the complex plane" @default.
- W2032596857 cites W1984207422 @default.
- W2032596857 cites W2000860899 @default.
- W2032596857 cites W2011508391 @default.
- W2032596857 cites W2012147031 @default.
- W2032596857 cites W2019997070 @default.
- W2032596857 cites W2022511911 @default.
- W2032596857 cites W2037912242 @default.
- W2032596857 cites W2053553953 @default.
- W2032596857 cites W2075558185 @default.
- W2032596857 cites W2141490319 @default.
- W2032596857 doi "https://doi.org/10.1098/rsta.1978.0067" @default.
- W2032596857 hasPublicationYear "1978" @default.
- W2032596857 type Work @default.
- W2032596857 sameAs 2032596857 @default.
- W2032596857 citedByCount "36" @default.
- W2032596857 countsByYear W20325968572014 @default.
- W2032596857 crossrefType "journal-article" @default.
- W2032596857 hasAuthorship W2032596857A5015630594 @default.
- W2032596857 hasConcept C10138342 @default.
- W2032596857 hasConcept C107706756 @default.
- W2032596857 hasConcept C114614502 @default.
- W2032596857 hasConcept C13355873 @default.
- W2032596857 hasConcept C134306372 @default.
- W2032596857 hasConcept C156004811 @default.
- W2032596857 hasConcept C162324750 @default.
- W2032596857 hasConcept C179117685 @default.
- W2032596857 hasConcept C182306322 @default.
- W2032596857 hasConcept C199360897 @default.
- W2032596857 hasConcept C204575570 @default.
- W2032596857 hasConcept C2524010 @default.
- W2032596857 hasConcept C2777027219 @default.
- W2032596857 hasConcept C33923547 @default.
- W2032596857 hasConcept C34388435 @default.
- W2032596857 hasConcept C37914503 @default.
- W2032596857 hasConcept C41008148 @default.
- W2032596857 hasConceptScore W2032596857C10138342 @default.
- W2032596857 hasConceptScore W2032596857C107706756 @default.
- W2032596857 hasConceptScore W2032596857C114614502 @default.
- W2032596857 hasConceptScore W2032596857C13355873 @default.
- W2032596857 hasConceptScore W2032596857C134306372 @default.
- W2032596857 hasConceptScore W2032596857C156004811 @default.
- W2032596857 hasConceptScore W2032596857C162324750 @default.
- W2032596857 hasConceptScore W2032596857C179117685 @default.
- W2032596857 hasConceptScore W2032596857C182306322 @default.
- W2032596857 hasConceptScore W2032596857C199360897 @default.
- W2032596857 hasConceptScore W2032596857C204575570 @default.
- W2032596857 hasConceptScore W2032596857C2524010 @default.
- W2032596857 hasConceptScore W2032596857C2777027219 @default.
- W2032596857 hasConceptScore W2032596857C33923547 @default.
- W2032596857 hasConceptScore W2032596857C34388435 @default.
- W2032596857 hasConceptScore W2032596857C37914503 @default.
- W2032596857 hasConceptScore W2032596857C41008148 @default.
- W2032596857 hasIssue "1364" @default.
- W2032596857 hasLocation W20325968571 @default.
- W2032596857 hasOpenAccess W2032596857 @default.
- W2032596857 hasPrimaryLocation W20325968571 @default.
- W2032596857 hasRelatedWork W2004031483 @default.
- W2032596857 hasRelatedWork W2016114307 @default.
- W2032596857 hasRelatedWork W2032072564 @default.
- W2032596857 hasRelatedWork W2078324494 @default.
- W2032596857 hasRelatedWork W2294873576 @default.
- W2032596857 hasRelatedWork W2371663938 @default.
- W2032596857 hasRelatedWork W2964321540 @default.
- W2032596857 hasRelatedWork W3015266405 @default.
- W2032596857 hasRelatedWork W3100688885 @default.
- W2032596857 hasRelatedWork W4302796931 @default.
- W2032596857 hasVolume "289" @default.
- W2032596857 isParatext "false" @default.
- W2032596857 isRetracted "false" @default.
- W2032596857 magId "2032596857" @default.
- W2032596857 workType "article" @default.