Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032936612> ?p ?o ?g. }
- W2032936612 endingPage "21280" @default.
- W2032936612 startingPage "21274" @default.
- W2032936612 abstract "Disassembly of the sperm nuclear envelope at fertilization is one of the earliest events in the development of the male pronucleus. We report that nuclear lamina disassembly in interphase sea urchin egg cytosol is a result of lamin B phosphorylation mediated by protein kinase C (PKC). Lamin B of permeabilized sea urchin sperm nuclei incubated in fertilized egg G1 phase cytosolic extract is phosphorylated within 1 min of incubation and solubilized prior to sperm chromatin decondensation. Phosphorylation is Ca2+-dependent. It is reversibly inhibited by the PKC-specific inhibitor chelerythrine, a PKC pseudosubstrate inhibitor peptide, and a PKC substrate peptide, but not by inhibitors of PKA, p34 cdc2 or calmodulin kinase II. Phosphorylation is inhibited by immunodepletion of cytosolic PKC and restored by addition of purified rat brain PKC. Sperm lamin B is a substrate for rat brain PKC in vitro, resulting in lamin B solubilization. Two-dimensional phosphopeptide maps of lamin B phosphorylated by the cytosolic kinase and by purified rat PKC are virtually identical. These data suggest that PKC is the major kinase required for interphase disassembly of the sperm lamina. Disassembly of the sperm nuclear envelope at fertilization is one of the earliest events in the development of the male pronucleus. We report that nuclear lamina disassembly in interphase sea urchin egg cytosol is a result of lamin B phosphorylation mediated by protein kinase C (PKC). Lamin B of permeabilized sea urchin sperm nuclei incubated in fertilized egg G1 phase cytosolic extract is phosphorylated within 1 min of incubation and solubilized prior to sperm chromatin decondensation. Phosphorylation is Ca2+-dependent. It is reversibly inhibited by the PKC-specific inhibitor chelerythrine, a PKC pseudosubstrate inhibitor peptide, and a PKC substrate peptide, but not by inhibitors of PKA, p34 cdc2 or calmodulin kinase II. Phosphorylation is inhibited by immunodepletion of cytosolic PKC and restored by addition of purified rat brain PKC. Sperm lamin B is a substrate for rat brain PKC in vitro, resulting in lamin B solubilization. Two-dimensional phosphopeptide maps of lamin B phosphorylated by the cytosolic kinase and by purified rat PKC are virtually identical. These data suggest that PKC is the major kinase required for interphase disassembly of the sperm lamina. The nuclear lamina consists of a polymeric network of intermediate filament molecules, the nuclear lamins, underlying the inner nuclear membrane. The lamina is a dynamic structure, undergoing expansion during interphase of the cell cycle, and depolymerization at mitosis upon breakdown of the nuclear envelope (NE) 1The abbreviations used are: NE, nuclear envelope; BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; DMAP, 6-dimethylaminopurine; NB, nuclear buffer; PAGE, polyacrylamide gel electrophoresis; PKA, protein kinase A (cAMP-dependent protein kinase); PKC, protein kinase C (Ca2+-dependent protein kinase); PKI, PKA inhibitor; CaM, calmodulin.1The abbreviations used are: NE, nuclear envelope; BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; DMAP, 6-dimethylaminopurine; NB, nuclear buffer; PAGE, polyacrylamide gel electrophoresis; PKA, protein kinase A (cAMP-dependent protein kinase); PKC, protein kinase C (Ca2+-dependent protein kinase); PKI, PKA inhibitor; CaM, calmodulin. (1Gerace L. Blobel G. Cell. 1980; 19: 277-287Abstract Full Text PDF PubMed Scopus (594) Google Scholar). Mitotic disassembly and reassembly of the lamina is regulated by reversible lamin phosphorylation and dephosphorylation (1Gerace L. Blobel G. Cell. 1980; 19: 277-287Abstract Full Text PDF PubMed Scopus (594) Google Scholar). Interphase lamin phosphorylation has also been reported (2Ottaviano Y. Gerace L. J. Biol. Chem. 1985; 260: 624-632Abstract Full Text PDF PubMed Google Scholar, 3Smith D.E. Gruenbaum Y. Berrios M. Fisher P.A. J. Cell Biol. 1987; 105: 771-790Crossref PubMed Scopus (68) Google Scholar, 4Hornbeck P. Huang K.P. Paul W.E. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 2279-2283Crossref PubMed Scopus (69) Google Scholar, 5Stuurman N. Maus N. Fisher P.A. J. Cell Sci. 1995; 108: 3137-3144PubMed Google Scholar, 6Kill I.R. Hutchison C.J. FEBS Lett. 1995; 377: 26-30Crossref PubMed Scopus (22) Google Scholar), but its significance is not fully understood.Several lamin kinases have been identified that promote mitotic lamina solubilization or inhibit lamina assembly in vitro. They include cyclin B/p34 cdc2 (7Peter M. Nakagawa J. Dorée M. Labbé J.-C. Nigg E.A. Cell. 1990; 61: 591-602Abstract Full Text PDF PubMed Scopus (548) Google Scholar), S6 kinase II (8Ward G.E. Kirschner M.W. Cell. 1990; 61: 561-577Abstract Full Text PDF PubMed Scopus (273) Google Scholar), protein kinase C (PKC) (4Hornbeck P. Huang K.P. Paul W.E. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 2279-2283Crossref PubMed Scopus (69) Google Scholar, 9Fields A.P. Petit G.R. May W.S. J. Biol. Chem. 1988; 263: 8253-8260Abstract Full Text PDF PubMed Google Scholar), and the cAMP-dependent protein kinase PKA (10Stuurman N. FEBS Lett. 1997; 401: 171-174Crossref PubMed Scopus (27) Google Scholar). Down-regulation of PKA has also been shown to be essential for mitotic lamina disassembly (11Lamb N.J.C. Cavadore J.-C. Labbé J.-C. Mauer R.A. Fernandez A. EMBO J. 1991; 10: 1523-1533Crossref PubMed Scopus (74) Google Scholar). Although not a lamin kinase, Ca2+/calmodulin-dependent kinase II (CaM kinase II) is also involved in mitotic NE breakdown in sea urchin embryos (12Baitinger C. Alderton J. Poenie M. Schulman H. Steinhardt R.A. J. Cell Biol. 1990; 111: 1763-1773Crossref PubMed Scopus (139) Google Scholar). PKC has also been shown to phosphorylate chicken lamin B2 in interphase, a process thought to regulate lamin import into the nucleus (13Hennekes H. Peter M. Nigg E.A. J. Cell Biol. 1993; 120: 1293-1304Crossref PubMed Scopus (102) Google Scholar). These observations imply that multiple kinases regulate the dynamics of the nuclear lamina during the cell cycle.The transformation of the sea urchin sperm nucleus into a pronucleus at fertilization provides an opportunity to investigate NE assembly/disassembly during interphase. Sea urchin eggs are fertilized in G1 phase of the first cell cycle after completion of both meiotic divisions. At fertilization, the sperm NE vesiculates and a new NE reforms around the male pronucleus as the sperm chromatin decondenses (14Longo F.J. Anderson E. J. Cell Biol. 1968; 39: 335-368Crossref Scopus (191) Google Scholar). Male pronuclear formation has been duplicated in a cell-free system by incubating detergent-permeabilized sperm nuclei in fertilized egg extracts (15Cameron L.A. Poccia D.L. Dev. Biol. 1994; 162: 568-578Crossref PubMed Scopus (60) Google Scholar, 16Collas P. Poccia D.L. Dev. Biol. 1995; 169: 123-135Crossref PubMed Scopus (41) Google Scholar, 17Collas P. Poccia D.L. J. Cell Sci. 1996; 109: 1275-1283Crossref PubMed Google Scholar, 18Collas P. Pinto-Correia C. Poccia D.L. Exp. Cell Res. 1995; 219: 687-698Crossref PubMed Scopus (23) Google Scholar, 19Collas P. Courvalin J.-C. Poccia D.L. J. Cell Biol. 1996; 135: 1715-1725Crossref PubMed Scopus (94) Google Scholar). Detergent-permeabilized sperm nuclei retain their lamina, which consists of a major 65-kDa B-type lamin (referred to as lamin B) and several minor uncharacterized lamin epitope-containing peptides (18Collas P. Pinto-Correia C. Poccia D.L. Exp. Cell Res. 1995; 219: 687-698Crossref PubMed Scopus (23) Google Scholar). The first step of male pronucleus formation in vitro is the disassembly of the sperm nuclear lamina. The pronuclear lamina is reassembled only following formation of the nuclear membranes during nuclear swelling (19Collas P. Courvalin J.-C. Poccia D.L. J. Cell Biol. 1996; 135: 1715-1725Crossref PubMed Scopus (94) Google Scholar).Interphase lamina disassembly requires ATP hydrolysis, consistent with the involvement of protein kinase(s) (18Collas P. Pinto-Correia C. Poccia D.L. Exp. Cell Res. 1995; 219: 687-698Crossref PubMed Scopus (23) Google Scholar). One kinase activated at fertilization in the sea urchin is PKC. Fertilization stimulates phospholipase C in the egg plasma membrane, releasing diacylglycerol and inositol 1,4,5-trisphosphate from phosphoinositides. Increased inositol 1,4,5-trisphosphate triggers an intracellular release of Ca2+, which together with diacylglycerol activates PKC (20Nishizuka Y. Science. 1986; 233: 305-312Crossref PubMed Scopus (4018) Google Scholar). Activated soluble PKC has been shown to translocate to the plasma membrane (21Olds J.L. Favit A. Nelson T. Ascoli G. Gerstein A. Cameron M. Cameron L. Lesterm D. Rakow T. De Barry J. Toshioka T. Freyberg Z. Baru J. Alkon D.L. Dev. Biol. 1995; 172: 675-682Crossref PubMed Scopus (24) Google Scholar). Translocation of activated PKC to non-plasma membranes, such as the NE, has also been reported, as PKC moves to the nucleus of cultured mammalian cells upon mitogenic stimulation (9Fields A.P. Petit G.R. May W.S. J. Biol. Chem. 1988; 263: 8253-8260Abstract Full Text PDF PubMed Google Scholar, 22Fields A.P. Pincus S.M. Kraft A.S. May W.S. J. Biol. Chem. 1989; 264: 21896-21901Abstract Full Text PDF PubMed Google Scholar, 23Hocevar B.A. Fields A.P. J. Biol. Chem. 1991; 266: 28-33Abstract Full Text PDF PubMed Google Scholar). A sea urchin PKC isoform (suPKC1) has been cloned (24Rakow T.L. Shen S.S. Dev. Growth Differ. 1994; 36: 489-497Crossref Scopus (10) Google Scholar) and several substrates proposed (21Olds J.L. Favit A. Nelson T. Ascoli G. Gerstein A. Cameron M. Cameron L. Lesterm D. Rakow T. De Barry J. Toshioka T. Freyberg Z. Baru J. Alkon D.L. Dev. Biol. 1995; 172: 675-682Crossref PubMed Scopus (24) Google Scholar, 25Shen S.S. Buck W.R. Dev. Biol. 1990; 140: 272-280Crossref PubMed Scopus (48) Google Scholar). However, no lamin kinase activity has been attributed to fertilization-activated PKC.We report here that phosphorylation of sperm nuclear lamin B precedes its solubilization, in an interphase egg cytosolic extract, and provide evidence that this phosphorylation is mediated by PKC. Lamin B phosphorylation and solubilization precedes decondensation of the sperm chromatin, but is not sufficient to promote chromatin decondensation. The nuclear lamina consists of a polymeric network of intermediate filament molecules, the nuclear lamins, underlying the inner nuclear membrane. The lamina is a dynamic structure, undergoing expansion during interphase of the cell cycle, and depolymerization at mitosis upon breakdown of the nuclear envelope (NE) 1The abbreviations used are: NE, nuclear envelope; BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; DMAP, 6-dimethylaminopurine; NB, nuclear buffer; PAGE, polyacrylamide gel electrophoresis; PKA, protein kinase A (cAMP-dependent protein kinase); PKC, protein kinase C (Ca2+-dependent protein kinase); PKI, PKA inhibitor; CaM, calmodulin.1The abbreviations used are: NE, nuclear envelope; BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; DMAP, 6-dimethylaminopurine; NB, nuclear buffer; PAGE, polyacrylamide gel electrophoresis; PKA, protein kinase A (cAMP-dependent protein kinase); PKC, protein kinase C (Ca2+-dependent protein kinase); PKI, PKA inhibitor; CaM, calmodulin. (1Gerace L. Blobel G. Cell. 1980; 19: 277-287Abstract Full Text PDF PubMed Scopus (594) Google Scholar). Mitotic disassembly and reassembly of the lamina is regulated by reversible lamin phosphorylation and dephosphorylation (1Gerace L. Blobel G. Cell. 1980; 19: 277-287Abstract Full Text PDF PubMed Scopus (594) Google Scholar). Interphase lamin phosphorylation has also been reported (2Ottaviano Y. Gerace L. J. Biol. Chem. 1985; 260: 624-632Abstract Full Text PDF PubMed Google Scholar, 3Smith D.E. Gruenbaum Y. Berrios M. Fisher P.A. J. Cell Biol. 1987; 105: 771-790Crossref PubMed Scopus (68) Google Scholar, 4Hornbeck P. Huang K.P. Paul W.E. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 2279-2283Crossref PubMed Scopus (69) Google Scholar, 5Stuurman N. Maus N. Fisher P.A. J. Cell Sci. 1995; 108: 3137-3144PubMed Google Scholar, 6Kill I.R. Hutchison C.J. FEBS Lett. 1995; 377: 26-30Crossref PubMed Scopus (22) Google Scholar), but its significance is not fully understood. Several lamin kinases have been identified that promote mitotic lamina solubilization or inhibit lamina assembly in vitro. They include cyclin B/p34 cdc2 (7Peter M. Nakagawa J. Dorée M. Labbé J.-C. Nigg E.A. Cell. 1990; 61: 591-602Abstract Full Text PDF PubMed Scopus (548) Google Scholar), S6 kinase II (8Ward G.E. Kirschner M.W. Cell. 1990; 61: 561-577Abstract Full Text PDF PubMed Scopus (273) Google Scholar), protein kinase C (PKC) (4Hornbeck P. Huang K.P. Paul W.E. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 2279-2283Crossref PubMed Scopus (69) Google Scholar, 9Fields A.P. Petit G.R. May W.S. J. Biol. Chem. 1988; 263: 8253-8260Abstract Full Text PDF PubMed Google Scholar), and the cAMP-dependent protein kinase PKA (10Stuurman N. FEBS Lett. 1997; 401: 171-174Crossref PubMed Scopus (27) Google Scholar). Down-regulation of PKA has also been shown to be essential for mitotic lamina disassembly (11Lamb N.J.C. Cavadore J.-C. Labbé J.-C. Mauer R.A. Fernandez A. EMBO J. 1991; 10: 1523-1533Crossref PubMed Scopus (74) Google Scholar). Although not a lamin kinase, Ca2+/calmodulin-dependent kinase II (CaM kinase II) is also involved in mitotic NE breakdown in sea urchin embryos (12Baitinger C. Alderton J. Poenie M. Schulman H. Steinhardt R.A. J. Cell Biol. 1990; 111: 1763-1773Crossref PubMed Scopus (139) Google Scholar). PKC has also been shown to phosphorylate chicken lamin B2 in interphase, a process thought to regulate lamin import into the nucleus (13Hennekes H. Peter M. Nigg E.A. J. Cell Biol. 1993; 120: 1293-1304Crossref PubMed Scopus (102) Google Scholar). These observations imply that multiple kinases regulate the dynamics of the nuclear lamina during the cell cycle. The transformation of the sea urchin sperm nucleus into a pronucleus at fertilization provides an opportunity to investigate NE assembly/disassembly during interphase. Sea urchin eggs are fertilized in G1 phase of the first cell cycle after completion of both meiotic divisions. At fertilization, the sperm NE vesiculates and a new NE reforms around the male pronucleus as the sperm chromatin decondenses (14Longo F.J. Anderson E. J. Cell Biol. 1968; 39: 335-368Crossref Scopus (191) Google Scholar). Male pronuclear formation has been duplicated in a cell-free system by incubating detergent-permeabilized sperm nuclei in fertilized egg extracts (15Cameron L.A. Poccia D.L. Dev. Biol. 1994; 162: 568-578Crossref PubMed Scopus (60) Google Scholar, 16Collas P. Poccia D.L. Dev. Biol. 1995; 169: 123-135Crossref PubMed Scopus (41) Google Scholar, 17Collas P. Poccia D.L. J. Cell Sci. 1996; 109: 1275-1283Crossref PubMed Google Scholar, 18Collas P. Pinto-Correia C. Poccia D.L. Exp. Cell Res. 1995; 219: 687-698Crossref PubMed Scopus (23) Google Scholar, 19Collas P. Courvalin J.-C. Poccia D.L. J. Cell Biol. 1996; 135: 1715-1725Crossref PubMed Scopus (94) Google Scholar). Detergent-permeabilized sperm nuclei retain their lamina, which consists of a major 65-kDa B-type lamin (referred to as lamin B) and several minor uncharacterized lamin epitope-containing peptides (18Collas P. Pinto-Correia C. Poccia D.L. Exp. Cell Res. 1995; 219: 687-698Crossref PubMed Scopus (23) Google Scholar). The first step of male pronucleus formation in vitro is the disassembly of the sperm nuclear lamina. The pronuclear lamina is reassembled only following formation of the nuclear membranes during nuclear swelling (19Collas P. Courvalin J.-C. Poccia D.L. J. Cell Biol. 1996; 135: 1715-1725Crossref PubMed Scopus (94) Google Scholar). Interphase lamina disassembly requires ATP hydrolysis, consistent with the involvement of protein kinase(s) (18Collas P. Pinto-Correia C. Poccia D.L. Exp. Cell Res. 1995; 219: 687-698Crossref PubMed Scopus (23) Google Scholar). One kinase activated at fertilization in the sea urchin is PKC. Fertilization stimulates phospholipase C in the egg plasma membrane, releasing diacylglycerol and inositol 1,4,5-trisphosphate from phosphoinositides. Increased inositol 1,4,5-trisphosphate triggers an intracellular release of Ca2+, which together with diacylglycerol activates PKC (20Nishizuka Y. Science. 1986; 233: 305-312Crossref PubMed Scopus (4018) Google Scholar). Activated soluble PKC has been shown to translocate to the plasma membrane (21Olds J.L. Favit A. Nelson T. Ascoli G. Gerstein A. Cameron M. Cameron L. Lesterm D. Rakow T. De Barry J. Toshioka T. Freyberg Z. Baru J. Alkon D.L. Dev. Biol. 1995; 172: 675-682Crossref PubMed Scopus (24) Google Scholar). Translocation of activated PKC to non-plasma membranes, such as the NE, has also been reported, as PKC moves to the nucleus of cultured mammalian cells upon mitogenic stimulation (9Fields A.P. Petit G.R. May W.S. J. Biol. Chem. 1988; 263: 8253-8260Abstract Full Text PDF PubMed Google Scholar, 22Fields A.P. Pincus S.M. Kraft A.S. May W.S. J. Biol. Chem. 1989; 264: 21896-21901Abstract Full Text PDF PubMed Google Scholar, 23Hocevar B.A. Fields A.P. J. Biol. Chem. 1991; 266: 28-33Abstract Full Text PDF PubMed Google Scholar). A sea urchin PKC isoform (suPKC1) has been cloned (24Rakow T.L. Shen S.S. Dev. Growth Differ. 1994; 36: 489-497Crossref Scopus (10) Google Scholar) and several substrates proposed (21Olds J.L. Favit A. Nelson T. Ascoli G. Gerstein A. Cameron M. Cameron L. Lesterm D. Rakow T. De Barry J. Toshioka T. Freyberg Z. Baru J. Alkon D.L. Dev. Biol. 1995; 172: 675-682Crossref PubMed Scopus (24) Google Scholar, 25Shen S.S. Buck W.R. Dev. Biol. 1990; 140: 272-280Crossref PubMed Scopus (48) Google Scholar). However, no lamin kinase activity has been attributed to fertilization-activated PKC. We report here that phosphorylation of sperm nuclear lamin B precedes its solubilization, in an interphase egg cytosolic extract, and provide evidence that this phosphorylation is mediated by PKC. Lamin B phosphorylation and solubilization precedes decondensation of the sperm chromatin, but is not sufficient to promote chromatin decondensation. We are grateful to Dr. Jon Holy (University of Minnesota, Duluth) for the gift of the W3-1 antibody, Dr. Laurent Meijer (CNRS, Roscoff, France) for the gift of olomoucine and roscovitine, Dr. Sheldon Shen (Iowa State University) for the gift of the anti-PKC antibody, and Dr. Howard Worman (Columbia University) for critical reading of the manuscript." @default.
- W2032936612 created "2016-06-24" @default.
- W2032936612 creator A5008842884 @default.
- W2032936612 creator A5025242358 @default.
- W2032936612 creator A5026798202 @default.
- W2032936612 creator A5072506531 @default.
- W2032936612 creator A5081306238 @default.
- W2032936612 date "1997-08-01" @default.
- W2032936612 modified "2023-09-27" @default.
- W2032936612 title "Protein Kinase C-mediated Interphase Lamin B Phosphorylation and Solubilization" @default.
- W2032936612 cites W1499613770 @default.
- W2032936612 cites W1512533325 @default.
- W2032936612 cites W1536311055 @default.
- W2032936612 cites W1544430323 @default.
- W2032936612 cites W1560197506 @default.
- W2032936612 cites W1589413565 @default.
- W2032936612 cites W1629392288 @default.
- W2032936612 cites W1827848747 @default.
- W2032936612 cites W1952398978 @default.
- W2032936612 cites W1964839077 @default.
- W2032936612 cites W1970740899 @default.
- W2032936612 cites W1977646528 @default.
- W2032936612 cites W1988093399 @default.
- W2032936612 cites W1993091799 @default.
- W2032936612 cites W1993190159 @default.
- W2032936612 cites W1996711598 @default.
- W2032936612 cites W1997794118 @default.
- W2032936612 cites W2008900071 @default.
- W2032936612 cites W2027222303 @default.
- W2032936612 cites W2035120987 @default.
- W2032936612 cites W2035678778 @default.
- W2032936612 cites W2037930251 @default.
- W2032936612 cites W2044267903 @default.
- W2032936612 cites W2047295125 @default.
- W2032936612 cites W2062533506 @default.
- W2032936612 cites W2065634301 @default.
- W2032936612 cites W2072298800 @default.
- W2032936612 cites W2072787132 @default.
- W2032936612 cites W2080375692 @default.
- W2032936612 cites W2084941472 @default.
- W2032936612 cites W2085547973 @default.
- W2032936612 cites W2087865198 @default.
- W2032936612 cites W2089332118 @default.
- W2032936612 cites W2089884478 @default.
- W2032936612 cites W2106485400 @default.
- W2032936612 cites W2119496694 @default.
- W2032936612 cites W2132161866 @default.
- W2032936612 cites W2135071188 @default.
- W2032936612 cites W2138697269 @default.
- W2032936612 cites W2139412961 @default.
- W2032936612 cites W2157073047 @default.
- W2032936612 cites W2187431229 @default.
- W2032936612 cites W2227869250 @default.
- W2032936612 cites W2339743264 @default.
- W2032936612 doi "https://doi.org/10.1074/jbc.272.34.21274" @default.
- W2032936612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9261138" @default.
- W2032936612 hasPublicationYear "1997" @default.
- W2032936612 type Work @default.
- W2032936612 sameAs 2032936612 @default.
- W2032936612 citedByCount "67" @default.
- W2032936612 countsByYear W20329366122012 @default.
- W2032936612 countsByYear W20329366122013 @default.
- W2032936612 countsByYear W20329366122014 @default.
- W2032936612 countsByYear W20329366122016 @default.
- W2032936612 countsByYear W20329366122017 @default.
- W2032936612 countsByYear W20329366122018 @default.
- W2032936612 countsByYear W20329366122019 @default.
- W2032936612 countsByYear W20329366122020 @default.
- W2032936612 countsByYear W20329366122021 @default.
- W2032936612 countsByYear W20329366122022 @default.
- W2032936612 crossrefType "journal-article" @default.
- W2032936612 hasAuthorship W2032936612A5008842884 @default.
- W2032936612 hasAuthorship W2032936612A5025242358 @default.
- W2032936612 hasAuthorship W2032936612A5026798202 @default.
- W2032936612 hasAuthorship W2032936612A5072506531 @default.
- W2032936612 hasAuthorship W2032936612A5081306238 @default.
- W2032936612 hasBestOaLocation W20329366121 @default.
- W2032936612 hasConcept C104317684 @default.
- W2032936612 hasConcept C11960822 @default.
- W2032936612 hasConcept C179093185 @default.
- W2032936612 hasConcept C184235292 @default.
- W2032936612 hasConcept C185592680 @default.
- W2032936612 hasConcept C29452124 @default.
- W2032936612 hasConcept C4863142 @default.
- W2032936612 hasConcept C55493867 @default.
- W2032936612 hasConcept C86803240 @default.
- W2032936612 hasConcept C87325107 @default.
- W2032936612 hasConcept C95444343 @default.
- W2032936612 hasConcept C97029542 @default.
- W2032936612 hasConceptScore W2032936612C104317684 @default.
- W2032936612 hasConceptScore W2032936612C11960822 @default.
- W2032936612 hasConceptScore W2032936612C179093185 @default.
- W2032936612 hasConceptScore W2032936612C184235292 @default.
- W2032936612 hasConceptScore W2032936612C185592680 @default.
- W2032936612 hasConceptScore W2032936612C29452124 @default.
- W2032936612 hasConceptScore W2032936612C4863142 @default.
- W2032936612 hasConceptScore W2032936612C55493867 @default.
- W2032936612 hasConceptScore W2032936612C86803240 @default.