Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032952395> ?p ?o ?g. }
- W2032952395 endingPage "140" @default.
- W2032952395 startingPage "121" @default.
- W2032952395 abstract "Cationic porphyrins form ground state electrostatically associated complexes with anionic oligo-electrolytes such as those formed by a series of glutamic acid (E) residues. Temperature dependencies were measured of the rate constants for intra-complex electron transfer to the triplet state of Pd(II)TMPyP4+ from a tyrosine (tyr, Y) or tryptophan (trp, W) moiety connected to a glutamic acid tetramer. In complexes such as YE4, E2YE2, YE4G10E (G, glycine), and WE4 these data were used to estimate the reorganization energy (lambda) and electronic interaction energy (HDA) relevant to the process. For all tyr-peptide complexes, lambda values were found to be large (lambda approximately 1.60 +/- 0.06 eV), reflecting a relatively high medium polarity in the vicinity of tyr residues. It further indicates that the tyr residues in all oligo-peptides are exposed to the aqueous medium in a similar way irrespective of the position of the aromatic moiety in the peptide chain. A significantly lower lambda value (lambda = 1.08 eV) was derived for the tryptophan-containing peptide complex, indicating a relatively higher hydrophobic character of trp compared to tyr. The electronic coupling matrix elements (HDA) derived for tyr-peptide complexes (5.1 meV for YE4, 5.4 meV for YE4G10E and 7.5 meV for E2YE2) were larger than that found for WE4 (1.1 meV). Molecular dynamics calculations were employed to obtain structural features of the porphyrin-peptide complexes. These showed average distances between the center of mass (COM) of the porphyrin ring and the center of mass of the amino acid aromatic ring of 816 +/- 140 pm (YE4), 800 +/- 80 pm (E2YE2), 900 +/- 130 pm (YE4G10E) and 970 +/- 160 pm (WE4). The molecular dynamics calculations were shown to be in good agreement with the experimentally determined electronic interaction energies, strongly suggesting that HDA is primarily responsible for the dependence of the electron-transfer rate constant (KET) on the donor-acceptor separation distance and relative orientation. The higher HDA (7.55 meV) derived for tyr incorporated into the middle of the peptide backbone (E2YE2) was presumed to be associated with a higher degree of orbital overlap due to a more favorable ring-ring orientation. Overlap parameters (beta derived for all peptide-porphyrin complexes were similar (approximately 0.95 +/- 0.06 A-1), being in good agreement with most literature values for similar systems. Finally, the intra-complex electron-transfer ratio (ktrp/ktyr) derived from flash photolysis experiments and the corresponding ratio derived from Marcus' theory combined with experimental data from the temperature-dependence investigations and electrochemical measurements were found to be in excellent agreement. This same consistency was found for the couple E4Y and E2YE2. The empirical expression (Moser and Dutton) governing the intraprotein electron-transfer rate constant in native systems combined with our experimental data (kET, lambda, delta G0) yielded tunneling pathway distances in excellent agreement with those arising from the molecular modeling studies. The exception was for the long peptide YE4G10E, for which the Quenched Molecular Dynamic (QMD) sampling technique was complicated and is probably inadequate." @default.
- W2032952395 created "2016-06-24" @default.
- W2032952395 creator A5009626835 @default.
- W2032952395 creator A5032171195 @default.
- W2032952395 creator A5076183808 @default.
- W2032952395 creator A5079806827 @default.
- W2032952395 date "2000-01-01" @default.
- W2032952395 modified "2023-09-24" @default.
- W2032952395 title "Self-assembled complexes of oligopeptides and metalloporphyrins: measurements of the reorganization and electronic interaction energies for photoinduced electron-transfer reactions" @default.
- W2032952395 cites W1964761757 @default.
- W2032952395 cites W1965128921 @default.
- W2032952395 cites W1969450151 @default.
- W2032952395 cites W1971035828 @default.
- W2032952395 cites W1972212305 @default.
- W2032952395 cites W1976352213 @default.
- W2032952395 cites W1977171492 @default.
- W2032952395 cites W1977746493 @default.
- W2032952395 cites W1981554467 @default.
- W2032952395 cites W1981823225 @default.
- W2032952395 cites W1982572263 @default.
- W2032952395 cites W1987446448 @default.
- W2032952395 cites W1989384815 @default.
- W2032952395 cites W1995941401 @default.
- W2032952395 cites W1998297703 @default.
- W2032952395 cites W1999724837 @default.
- W2032952395 cites W2000364980 @default.
- W2032952395 cites W2001270915 @default.
- W2032952395 cites W2002518244 @default.
- W2032952395 cites W2003065876 @default.
- W2032952395 cites W2003657760 @default.
- W2032952395 cites W2004607866 @default.
- W2032952395 cites W2005819782 @default.
- W2032952395 cites W2010669686 @default.
- W2032952395 cites W2012403484 @default.
- W2032952395 cites W2012632609 @default.
- W2032952395 cites W2016664772 @default.
- W2032952395 cites W2017241584 @default.
- W2032952395 cites W2020664548 @default.
- W2032952395 cites W2025161633 @default.
- W2032952395 cites W2029667189 @default.
- W2032952395 cites W2030021044 @default.
- W2032952395 cites W2031458922 @default.
- W2032952395 cites W2031904472 @default.
- W2032952395 cites W2032998433 @default.
- W2032952395 cites W2033551141 @default.
- W2032952395 cites W2038996910 @default.
- W2032952395 cites W2040369468 @default.
- W2032952395 cites W2049633097 @default.
- W2032952395 cites W2049829559 @default.
- W2032952395 cites W2052767617 @default.
- W2032952395 cites W2053324672 @default.
- W2032952395 cites W2057820608 @default.
- W2032952395 cites W2057968910 @default.
- W2032952395 cites W2058433292 @default.
- W2032952395 cites W2060065716 @default.
- W2032952395 cites W2062259234 @default.
- W2032952395 cites W2062341526 @default.
- W2032952395 cites W2068265376 @default.
- W2032952395 cites W2071031838 @default.
- W2032952395 cites W2071039565 @default.
- W2032952395 cites W2074431747 @default.
- W2032952395 cites W2074743176 @default.
- W2032952395 cites W2074844076 @default.
- W2032952395 cites W2075544990 @default.
- W2032952395 cites W2077572119 @default.
- W2032952395 cites W2080971824 @default.
- W2032952395 cites W2083737822 @default.
- W2032952395 cites W2087846348 @default.
- W2032952395 cites W2089802780 @default.
- W2032952395 cites W2092556109 @default.
- W2032952395 cites W2095210885 @default.
- W2032952395 cites W2095216354 @default.
- W2032952395 cites W2095360079 @default.
- W2032952395 cites W2122199548 @default.
- W2032952395 cites W2152013874 @default.
- W2032952395 cites W2162715517 @default.
- W2032952395 cites W2231492844 @default.
- W2032952395 cites W2506203716 @default.
- W2032952395 cites W2949099349 @default.
- W2032952395 cites W2950567379 @default.
- W2032952395 cites W2951971590 @default.
- W2032952395 doi "https://doi.org/10.1016/s0301-4622(99)00128-3" @default.
- W2032952395 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10672418" @default.
- W2032952395 hasPublicationYear "2000" @default.
- W2032952395 type Work @default.
- W2032952395 sameAs 2032952395 @default.
- W2032952395 citedByCount "22" @default.
- W2032952395 countsByYear W20329523952015 @default.
- W2032952395 countsByYear W20329523952016 @default.
- W2032952395 countsByYear W20329523952020 @default.
- W2032952395 crossrefType "journal-article" @default.
- W2032952395 hasAuthorship W2032952395A5009626835 @default.
- W2032952395 hasAuthorship W2032952395A5032171195 @default.
- W2032952395 hasAuthorship W2032952395A5076183808 @default.
- W2032952395 hasAuthorship W2032952395A5079806827 @default.
- W2032952395 hasConcept C123669783 @default.
- W2032952395 hasConcept C185592680 @default.
- W2032952395 hasConcept C2776568683 @default.