Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032964182> ?p ?o ?g. }
- W2032964182 endingPage "186" @default.
- W2032964182 startingPage "171" @default.
- W2032964182 abstract "Abstract The aqueous Fe(II)–oxide Fe(III) system is a reactant for many classes of redox sensitive compounds via an interfacial Fe(II) sorption and electron transfer process. The poorly soluble Fe(III) products formed as a result of contaminant reduction and Fe(II) oxidation on iron oxides may be capable of modifying iron oxide surfaces and affecting subsequent reduction rates of contaminants such as halogenated ethenes or nitroaromatic compounds. The scope of this study was to identify the secondary Fe(III) mineral phases formed after Fe(II) oxidation on common iron oxides during heterogeneous contaminant reduction by directly targeting the secondary minerals using Mossbauer-active isotopes. Fe(III) mineral characterization was performed using 57Fe-Mossbauer spectroscopy, μ-X-ray diffraction, and electron microscopy after oxidation of dissolved 57Fe(II) using nitrobenzenes as a model oxidant in pH-buffered suspensions of 56hematite, 56goethite, 56magnetite, and 56maghemite. Mossbauer spectra confirmed sorbed 57Fe(II) becomes oxidized by the parent 56Fe(III)-oxide sorbent and assimilated as the sorbent oxide prior to any nitrobenzene reduction, consistent with several reports in the literature. In addition to oxide sorbent growth, Fe(II) sorption and oxidation by nitrobenzene result also in the formation of secondary Fe(III) minerals. Goethite formed on three hematite morphologies (rhombohedra, needles, and hexagonal platelets), and acicular needle shapes typical of goethite appeared on the micron-sized hexagonal platelets, at times aligned in 60° orientations on (0 0 1) faces. The proportion of goethite formation on the three hematites was linked to number of surface sites. Only goethite was observed to form on a goethite sorbent. In contrast, lepidocrocite was observed to form on magnetite and maghemite sorbents (consistent with homogeneous Fe(II) oxidation by O2) and assumed spherulite morphologies. All secondary Fe(III) phases were confirmed within μ-X-ray diffraction patterns. On hematite, the directed formation of goethite as opposed to lepidocrocite suggests hematite may possess a templating ability for the α-FeOOH atom arrangement as opposed to γ-FeOOH. The initiation of all secondary Fe-oxide formations occurred after four to six equivalents of monolayer coverage on the supporting mineral sorbent. Overall, Fe(III) product identity formed during heterogeneous Fe(II) oxidation appears to be governed mainly by the identity of the underlying sorbent and partly by the amount of available surface sites." @default.
- W2032964182 created "2016-06-24" @default.
- W2032964182 creator A5030212372 @default.
- W2032964182 creator A5066752579 @default.
- W2032964182 creator A5078417936 @default.
- W2032964182 date "2012-08-01" @default.
- W2032964182 modified "2023-10-16" @default.
- W2032964182 title "Heterogeneous oxidation of Fe(II) on iron oxides in aqueous systems: Identification and controls of Fe(III) product formation" @default.
- W2032964182 cites W1566166950 @default.
- W2032964182 cites W1580272938 @default.
- W2032964182 cites W1656896514 @default.
- W2032964182 cites W1672014912 @default.
- W2032964182 cites W1964537205 @default.
- W2032964182 cites W1964858474 @default.
- W2032964182 cites W1967199319 @default.
- W2032964182 cites W1968488832 @default.
- W2032964182 cites W1970150837 @default.
- W2032964182 cites W1971633481 @default.
- W2032964182 cites W1974524134 @default.
- W2032964182 cites W1976849038 @default.
- W2032964182 cites W1979621561 @default.
- W2032964182 cites W1985662306 @default.
- W2032964182 cites W1987298506 @default.
- W2032964182 cites W1987905671 @default.
- W2032964182 cites W1989690913 @default.
- W2032964182 cites W1990455185 @default.
- W2032964182 cites W1994025773 @default.
- W2032964182 cites W1999235739 @default.
- W2032964182 cites W2001099081 @default.
- W2032964182 cites W2006210383 @default.
- W2032964182 cites W2007260110 @default.
- W2032964182 cites W2012930274 @default.
- W2032964182 cites W2012948404 @default.
- W2032964182 cites W2014087987 @default.
- W2032964182 cites W2016457559 @default.
- W2032964182 cites W2017923116 @default.
- W2032964182 cites W2023007285 @default.
- W2032964182 cites W2024627840 @default.
- W2032964182 cites W2029189018 @default.
- W2032964182 cites W2031332048 @default.
- W2032964182 cites W2032192588 @default.
- W2032964182 cites W2033390981 @default.
- W2032964182 cites W2034399087 @default.
- W2032964182 cites W2035086753 @default.
- W2032964182 cites W2036266265 @default.
- W2032964182 cites W2040901305 @default.
- W2032964182 cites W2044039763 @default.
- W2032964182 cites W2048386523 @default.
- W2032964182 cites W2050507226 @default.
- W2032964182 cites W2058138718 @default.
- W2032964182 cites W2065164056 @default.
- W2032964182 cites W2067729614 @default.
- W2032964182 cites W2069530431 @default.
- W2032964182 cites W2070904104 @default.
- W2032964182 cites W2070912856 @default.
- W2032964182 cites W2071348993 @default.
- W2032964182 cites W2071639454 @default.
- W2032964182 cites W2071704543 @default.
- W2032964182 cites W2072282346 @default.
- W2032964182 cites W2074615363 @default.
- W2032964182 cites W2074753263 @default.
- W2032964182 cites W2076206506 @default.
- W2032964182 cites W2084872997 @default.
- W2032964182 cites W2089392570 @default.
- W2032964182 cites W2090892825 @default.
- W2032964182 cites W2091913250 @default.
- W2032964182 cites W2094586122 @default.
- W2032964182 cites W2097640027 @default.
- W2032964182 cites W2105066707 @default.
- W2032964182 cites W2106936084 @default.
- W2032964182 cites W2137171441 @default.
- W2032964182 cites W2140875394 @default.
- W2032964182 cites W2155496078 @default.
- W2032964182 cites W2319140594 @default.
- W2032964182 cites W2338036496 @default.
- W2032964182 cites W373486403 @default.
- W2032964182 doi "https://doi.org/10.1016/j.gca.2012.05.031" @default.
- W2032964182 hasPublicationYear "2012" @default.
- W2032964182 type Work @default.
- W2032964182 sameAs 2032964182 @default.
- W2032964182 citedByCount "51" @default.
- W2032964182 countsByYear W20329641822013 @default.
- W2032964182 countsByYear W20329641822014 @default.
- W2032964182 countsByYear W20329641822016 @default.
- W2032964182 countsByYear W20329641822017 @default.
- W2032964182 countsByYear W20329641822018 @default.
- W2032964182 countsByYear W20329641822019 @default.
- W2032964182 countsByYear W20329641822020 @default.
- W2032964182 countsByYear W20329641822021 @default.
- W2032964182 countsByYear W20329641822022 @default.
- W2032964182 countsByYear W20329641822023 @default.
- W2032964182 crossrefType "journal-article" @default.
- W2032964182 hasAuthorship W2032964182A5030212372 @default.
- W2032964182 hasAuthorship W2032964182A5066752579 @default.
- W2032964182 hasAuthorship W2032964182A5078417936 @default.
- W2032964182 hasConcept C116834253 @default.
- W2032964182 hasConcept C127413603 @default.
- W2032964182 hasConcept C147789679 @default.