Matches in SemOpenAlex for { <https://semopenalex.org/work/W2032977933> ?p ?o ?g. }
- W2032977933 abstract "The recent fabrication of graphene nanoribbon (GNR) field-effect transistors poses a challenge for first-principles modeling of carbon nanoelectronics due to many thousand atoms present in the device. The state of the art quantum transport algorithms, based on the nonequilibrium Green function formalism combined with the density-functional theory (NEGF-DFT), were originally developed to calculate self-consistent electron density in equilibrium and at finite bias voltage (as a prerequisite to obtain conductance or current-voltage characteristics, respectively) for small molecules attached to metallic electrodes where only a few hundred atoms are typically simulated. Here we introduce combination of two numerically efficient algorithms which make it possible to extend the NEGF-DFT framework to device simulations involving large number of atoms. Our first algorithm offers an alternative to the usual evaluation of the equilibrium part of electron density via numerical contour integration of the retarded Green function in the upper complex half-plane. It is based on the replacement of the Fermi function $f(E)$ with an analytic function $stackrel{ifmmode tilde{}else ~{}fi{}}{f}(E)$ coinciding with $f(E)$ inside the integration range along the real axis, but decaying exponentially in the upper complex half-plane. Although $stackrel{ifmmode tilde{}else ~{}fi{}}{f}(E)$ has infinite number of poles, whose positions and residues are determined analytically, only a finite number of those poles have non-negligible residues. We also discuss how this algorithm can be extended to compute the nonequilibrium contribution to electron density, thereby evading cumbersome real-axis integration (within the bias voltage window) of NEGFs which is very difficult to converge for systems with large number of atoms while maintaining current conservation. Our second algorithm combines the recursive formulas with the geometrical partitioning of an arbitrary multiterminal device into nonuniform segments in order to reduce the computational complexity of the retarded Green function evaluation by extracting only its submatrices required for electron density and transmission function. We illustrate fusion of these two algorithms into the NEGF-DFT-type code by computing charge transfer, charge redistribution and conductance in zigzag-$text{GNR}ensuremath{mid}text{variable}$-width-armchair-$text{GNR}ensuremath{mid}text{zigzag}$-GNR two-terminal device covered with a gate electrode made of graphene layer as well. The total number of carbon and edge-passivating hydrogen atoms within the simulated central region of this device is $ensuremath{simeq}7000$. Our self-consistent modeling of the gate voltage effect suggests that rather large gate voltage $ensuremath{simeq}3text{ }text{eV}$ might be required to shift the band gap of the proposed AGNR interconnect and switch the transport from insulating into the regime of a single open conducting channel." @default.
- W2032977933 created "2016-06-24" @default.
- W2032977933 creator A5022489954 @default.
- W2032977933 creator A5023917223 @default.
- W2032977933 date "2010-04-26" @default.
- W2032977933 modified "2023-09-23" @default.
- W2032977933 title "Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms" @default.
- W2032977933 cites W149175428 @default.
- W2032977933 cites W1901415922 @default.
- W2032977933 cites W1964188160 @default.
- W2032977933 cites W1966639262 @default.
- W2032977933 cites W1968631182 @default.
- W2032977933 cites W1968962150 @default.
- W2032977933 cites W1971592709 @default.
- W2032977933 cites W1975422305 @default.
- W2032977933 cites W1976761739 @default.
- W2032977933 cites W1983208835 @default.
- W2032977933 cites W1985252301 @default.
- W2032977933 cites W1986980084 @default.
- W2032977933 cites W1988310931 @default.
- W2032977933 cites W1989034096 @default.
- W2032977933 cites W1991623240 @default.
- W2032977933 cites W1992609625 @default.
- W2032977933 cites W1993743444 @default.
- W2032977933 cites W1998906317 @default.
- W2032977933 cites W2005835571 @default.
- W2032977933 cites W2006971455 @default.
- W2032977933 cites W2008987531 @default.
- W2032977933 cites W2014935324 @default.
- W2032977933 cites W2019162213 @default.
- W2032977933 cites W2020951599 @default.
- W2032977933 cites W2029635197 @default.
- W2032977933 cites W2030895522 @default.
- W2032977933 cites W2032608619 @default.
- W2032977933 cites W2036967467 @default.
- W2032977933 cites W2038754735 @default.
- W2032977933 cites W2039892357 @default.
- W2032977933 cites W2042499596 @default.
- W2032977933 cites W2045416062 @default.
- W2032977933 cites W2046042488 @default.
- W2032977933 cites W2049923364 @default.
- W2032977933 cites W2053423104 @default.
- W2032977933 cites W2056804942 @default.
- W2032977933 cites W2058122340 @default.
- W2032977933 cites W2059570662 @default.
- W2032977933 cites W2063946521 @default.
- W2032977933 cites W2067760133 @default.
- W2032977933 cites W2075879351 @default.
- W2032977933 cites W2078792724 @default.
- W2032977933 cites W2079193203 @default.
- W2032977933 cites W2079468187 @default.
- W2032977933 cites W2080368022 @default.
- W2032977933 cites W2080953325 @default.
- W2032977933 cites W2083465226 @default.
- W2032977933 cites W2084486188 @default.
- W2032977933 cites W2086693509 @default.
- W2032977933 cites W2087638855 @default.
- W2032977933 cites W2088883384 @default.
- W2032977933 cites W2091191927 @default.
- W2032977933 cites W2102468587 @default.
- W2032977933 cites W2105685140 @default.
- W2032977933 cites W2110801014 @default.
- W2032977933 cites W2124862188 @default.
- W2032977933 cites W2126934395 @default.
- W2032977933 cites W2133756169 @default.
- W2032977933 cites W2136682506 @default.
- W2032977933 cites W2140810208 @default.
- W2032977933 cites W2147438007 @default.
- W2032977933 cites W2151097667 @default.
- W2032977933 cites W2157941924 @default.
- W2032977933 cites W2159762451 @default.
- W2032977933 cites W2164126827 @default.
- W2032977933 cites W2169106004 @default.
- W2032977933 cites W2170553040 @default.
- W2032977933 cites W2496111147 @default.
- W2032977933 cites W3022591904 @default.
- W2032977933 cites W3041402674 @default.
- W2032977933 cites W3102175799 @default.
- W2032977933 cites W3102300752 @default.
- W2032977933 cites W3103608540 @default.
- W2032977933 cites W3105681947 @default.
- W2032977933 cites W4229601930 @default.
- W2032977933 doi "https://doi.org/10.1103/physrevb.81.155450" @default.
- W2032977933 hasPublicationYear "2010" @default.
- W2032977933 type Work @default.
- W2032977933 sameAs 2032977933 @default.
- W2032977933 citedByCount "53" @default.
- W2032977933 countsByYear W20329779332012 @default.
- W2032977933 countsByYear W20329779332013 @default.
- W2032977933 countsByYear W20329779332014 @default.
- W2032977933 countsByYear W20329779332015 @default.
- W2032977933 countsByYear W20329779332016 @default.
- W2032977933 countsByYear W20329779332018 @default.
- W2032977933 countsByYear W20329779332019 @default.
- W2032977933 countsByYear W20329779332020 @default.
- W2032977933 countsByYear W20329779332021 @default.
- W2032977933 countsByYear W20329779332022 @default.
- W2032977933 countsByYear W20329779332023 @default.
- W2032977933 crossrefType "journal-article" @default.
- W2032977933 hasAuthorship W2032977933A5022489954 @default.