Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033072617> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2033072617 endingPage "418" @default.
- W2033072617 startingPage "411" @default.
- W2033072617 abstract "퍼지 클러스터링 기반 벡터 양자화 알고리즘은 퍼지 클러스터링 분석이 벡터 양자화 프로세스 초기단계에서 초기화에 덜 민감하게 하기 때 문에 데이터 압축 분야에서 널리 사용되어 왔다. 하지만, 퍼지 클러스터링 처리는 훈련 벡터 공간에 포함된 불확실한 양적 공식의 복잡한 프레 임워크 때문에 상당한 계산량이 요구된다. 이러한 상당한 계산량 부하를 극복하기위해 본 논문은 4,096 프로세싱 엘리먼트로 구성된 어레이 아 키텍처를 이용하여 퍼지 벡터 양자화 알고리즘의 병렬 구현을 제안한다. 제안하는 병렬 구현은 4,096 프로세싱 엘리먼트를 이용하여 클러스터 링 프로세스 동안 효과적인 벡터 할당 정책을 적용함으로써 계산적으로 효율적인 솔루션을 제공한다. 모의실험 결과, 제안한 병렬 구현은 기존 의 다른 어레이 아키텍처를 이용한 구현보다 성능 및 효율 측면에서 상당한 향상을 보였다. 또한동일한 130nm 기술에서 제안한 병렬 구현은 오늘날의 ARM이나 TI DSP 프로세서를 이용한 구현과 비교하여 약 1000배의 성능 향상 및 100배의 에너지 효율 향상을 보였다. 이 결과들은 향상된 성능 및 에너지효율에서 제안한 병렬 구현의 잠재가능성을 입증한다. Vector quantization algorithm based on fuzzy clustering has been widely used in the field of data compression since the use of fuzzy clustering analysis in the early stages of a vector quantization process can make this process less sensitive to its initialization. However, the process of fuzzy clustering is computationally very intensive because of its complex framework for the quantitative formulation of the uncertainty involved in the training vector space. To overcome the computational burden of the process, this paper introduces an array architecture for the implementation of fuzzy vector quantization (FVQ). The arrayarchitecture, which consists of 4,096 processing elements (PEs), provides a computationally efficient solution by employing an effective vector assignment strategy during the clustering process. Experimental results indicatethat the proposed parallel implementation providessignificantly greater performance and efficiency than appropriately scaled alternative array systems. In addition, the proposed parallel implementation provides 1000x greater performance and 100x higher energy efficiency than other implementations using today's ARMand TI DSP processors in the same 130nm technology. These results demonstrate that the proposed parallel implementation shows the potential for improved performance and energy efficiency." @default.
- W2033072617 created "2016-06-24" @default.
- W2033072617 creator A5026778303 @default.
- W2033072617 creator A5033615399 @default.
- W2033072617 creator A5048560571 @default.
- W2033072617 date "2009-12-31" @default.
- W2033072617 modified "2023-09-25" @default.
- W2033072617 title "A Massively Parallel Algorithm for Fuzzy Vector Quantization" @default.
- W2033072617 cites W1977598202 @default.
- W2033072617 cites W1979804615 @default.
- W2033072617 cites W2014447400 @default.
- W2033072617 cites W2095679991 @default.
- W2033072617 cites W2109475408 @default.
- W2033072617 cites W2113043017 @default.
- W2033072617 cites W2121892532 @default.
- W2033072617 cites W2122787934 @default.
- W2033072617 cites W2138766941 @default.
- W2033072617 cites W2156346058 @default.
- W2033072617 cites W2157741195 @default.
- W2033072617 cites W2475089102 @default.
- W2033072617 doi "https://doi.org/10.3745/kipsta.2009.16a.6.411" @default.
- W2033072617 hasPublicationYear "2009" @default.
- W2033072617 type Work @default.
- W2033072617 sameAs 2033072617 @default.
- W2033072617 citedByCount "4" @default.
- W2033072617 countsByYear W20330726172012 @default.
- W2033072617 crossrefType "journal-article" @default.
- W2033072617 hasAuthorship W2033072617A5026778303 @default.
- W2033072617 hasAuthorship W2033072617A5033615399 @default.
- W2033072617 hasAuthorship W2033072617A5048560571 @default.
- W2033072617 hasBestOaLocation W20330726171 @default.
- W2033072617 hasConcept C11413529 @default.
- W2033072617 hasConcept C114466953 @default.
- W2033072617 hasConcept C119599485 @default.
- W2033072617 hasConcept C127413603 @default.
- W2033072617 hasConcept C154945302 @default.
- W2033072617 hasConcept C17212007 @default.
- W2033072617 hasConcept C173608175 @default.
- W2033072617 hasConcept C190475519 @default.
- W2033072617 hasConcept C199360897 @default.
- W2033072617 hasConcept C199833920 @default.
- W2033072617 hasConcept C2742236 @default.
- W2033072617 hasConcept C28855332 @default.
- W2033072617 hasConcept C41008148 @default.
- W2033072617 hasConcept C58166 @default.
- W2033072617 hasConcept C73555534 @default.
- W2033072617 hasConcept C84462506 @default.
- W2033072617 hasConcept C93372532 @default.
- W2033072617 hasConcept C9390403 @default.
- W2033072617 hasConceptScore W2033072617C11413529 @default.
- W2033072617 hasConceptScore W2033072617C114466953 @default.
- W2033072617 hasConceptScore W2033072617C119599485 @default.
- W2033072617 hasConceptScore W2033072617C127413603 @default.
- W2033072617 hasConceptScore W2033072617C154945302 @default.
- W2033072617 hasConceptScore W2033072617C17212007 @default.
- W2033072617 hasConceptScore W2033072617C173608175 @default.
- W2033072617 hasConceptScore W2033072617C190475519 @default.
- W2033072617 hasConceptScore W2033072617C199360897 @default.
- W2033072617 hasConceptScore W2033072617C199833920 @default.
- W2033072617 hasConceptScore W2033072617C2742236 @default.
- W2033072617 hasConceptScore W2033072617C28855332 @default.
- W2033072617 hasConceptScore W2033072617C41008148 @default.
- W2033072617 hasConceptScore W2033072617C58166 @default.
- W2033072617 hasConceptScore W2033072617C73555534 @default.
- W2033072617 hasConceptScore W2033072617C84462506 @default.
- W2033072617 hasConceptScore W2033072617C93372532 @default.
- W2033072617 hasConceptScore W2033072617C9390403 @default.
- W2033072617 hasIssue "6" @default.
- W2033072617 hasLocation W20330726171 @default.
- W2033072617 hasOpenAccess W2033072617 @default.
- W2033072617 hasPrimaryLocation W20330726171 @default.
- W2033072617 hasRelatedWork W1489554298 @default.
- W2033072617 hasRelatedWork W1843313357 @default.
- W2033072617 hasRelatedWork W1971930133 @default.
- W2033072617 hasRelatedWork W2033072617 @default.
- W2033072617 hasRelatedWork W2071231175 @default.
- W2033072617 hasRelatedWork W2117689557 @default.
- W2033072617 hasRelatedWork W2166950402 @default.
- W2033072617 hasRelatedWork W2556145167 @default.
- W2033072617 hasRelatedWork W2608884419 @default.
- W2033072617 hasRelatedWork W3156339759 @default.
- W2033072617 hasVolume "16A" @default.
- W2033072617 isParatext "false" @default.
- W2033072617 isRetracted "false" @default.
- W2033072617 magId "2033072617" @default.
- W2033072617 workType "article" @default.