Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033134716> ?p ?o ?g. }
- W2033134716 endingPage "1601" @default.
- W2033134716 startingPage "1589" @default.
- W2033134716 abstract "Fracture network and preferential flow path images from exposed outcrops of geological formations, exposed soil pedon faces, and extracted soil columns and rock cores are often used to conceptualize and construct models to predict the fate and transport of subsurface contaminants. Both the scale resolutions inherent in these observations and the upscaling methods used to obtain macroscopic flow and transport parameters may result in uncertainties in the prediction. We present a mechanistic‐based approach that utilizes a discrete fracture flow and transport model, a distributed and high performance computational architecture, and a genetic‐based search algorithm to invert scale‐ representative, equivalent fracture networks or the preferential flow paths. Synthetic breakthrough curves (BTCs) and exposed structural information from known fracture networks in hypothetical soil columns are presented to the search algorithm. Using three genetic operators, a simple genetic algorithm (SGA) is able to invert the correct pictures of simple but not complex fracture networks. Solute transport experiments using soil columns often assume that the structure of soil columns is laterally uniform with respect to the macroscopic transport direction and the transport process is longitudinally one‐ dimensional. This assumption and the one BTC thus collected for each injection of solutes, even with flow interruptions, are not sufficient to guide the search algorithm toward the global optimum. Additional information (e.g., multiple solute BTCs along a cross section of the soil column) is necessary for the SGA to invert the correct fracture network. Three SGA population statistics, fracture network uncertainty, informatic entropy, and matrix‐fracture contact area, are proposed to measure the uncertainty of SGA near optima. A positive correlation between the reduction of these statistics and the level of relevant information to better confine the SGA search space was found. The SGA search algorithm is then applied to a laboratory solute transport problem. Multiple scenarios of search constraints, derived from visually traced surface features, are examined. The hypothesis that variation in fracture aperture may reduce the uncertainty of SGA near optima is also tested. The results from these applications suggest that there is a certain degree of uncertainty regarding the flowing nature of the exposed fracture segments that are visually traced. The uncertainty of SGA near optima is not improved by incorporating fracture aperture information into the fracture networks. Breakthrough curves thus calculated have marginal improvement, relative to the uniform aperture SGA near optima, in fitting the observations. The lack of improvement may be caused by the relative uniform structure of the soil and the scale of the problem. It is further suggested that in applying the search algorithm to laboratory and field problems, one explores only the search scenarios that relevant information and search constraints may warrant." @default.
- W2033134716 created "2016-06-24" @default.
- W2033134716 creator A5009775554 @default.
- W2033134716 date "2001-06-01" @default.
- W2033134716 modified "2023-10-14" @default.
- W2033134716 title "In search of preferential flow paths in structured porous media using a simple genetic algorithm" @default.
- W2033134716 cites W1970128526 @default.
- W2033134716 cites W1976603862 @default.
- W2033134716 cites W1977745027 @default.
- W2033134716 cites W1980440523 @default.
- W2033134716 cites W1990850195 @default.
- W2033134716 cites W1991814702 @default.
- W2033134716 cites W1995875735 @default.
- W2033134716 cites W2001305828 @default.
- W2033134716 cites W2008262227 @default.
- W2033134716 cites W2008489179 @default.
- W2033134716 cites W2017233220 @default.
- W2033134716 cites W2018968204 @default.
- W2033134716 cites W2019523841 @default.
- W2033134716 cites W2022672890 @default.
- W2033134716 cites W2023382264 @default.
- W2033134716 cites W2024183913 @default.
- W2033134716 cites W2025057148 @default.
- W2033134716 cites W2032015208 @default.
- W2033134716 cites W2034874859 @default.
- W2033134716 cites W2036413370 @default.
- W2033134716 cites W2042241198 @default.
- W2033134716 cites W2047319677 @default.
- W2033134716 cites W2049477844 @default.
- W2033134716 cites W2050179770 @default.
- W2033134716 cites W2051333359 @default.
- W2033134716 cites W2052528744 @default.
- W2033134716 cites W2057669718 @default.
- W2033134716 cites W2058815101 @default.
- W2033134716 cites W2070458132 @default.
- W2033134716 cites W2081919462 @default.
- W2033134716 cites W2082519018 @default.
- W2033134716 cites W2085275847 @default.
- W2033134716 cites W2085557657 @default.
- W2033134716 cites W2114872079 @default.
- W2033134716 cites W2136750680 @default.
- W2033134716 cites W2145219808 @default.
- W2033134716 cites W2157427767 @default.
- W2033134716 cites W2165008178 @default.
- W2033134716 cites W2166910181 @default.
- W2033134716 cites W4233264407 @default.
- W2033134716 cites W4247100129 @default.
- W2033134716 cites W2072101060 @default.
- W2033134716 doi "https://doi.org/10.1029/2000wr900384" @default.
- W2033134716 hasPublicationYear "2001" @default.
- W2033134716 type Work @default.
- W2033134716 sameAs 2033134716 @default.
- W2033134716 citedByCount "21" @default.
- W2033134716 countsByYear W20331347162012 @default.
- W2033134716 countsByYear W20331347162015 @default.
- W2033134716 countsByYear W20331347162018 @default.
- W2033134716 crossrefType "journal-article" @default.
- W2033134716 hasAuthorship W2033134716A5009775554 @default.
- W2033134716 hasBestOaLocation W20331347161 @default.
- W2033134716 hasConcept C105569014 @default.
- W2033134716 hasConcept C11413529 @default.
- W2033134716 hasConcept C121332964 @default.
- W2033134716 hasConcept C127313418 @default.
- W2033134716 hasConcept C144024400 @default.
- W2033134716 hasConcept C149923435 @default.
- W2033134716 hasConcept C159390177 @default.
- W2033134716 hasConcept C186060115 @default.
- W2033134716 hasConcept C187320778 @default.
- W2033134716 hasConcept C2524010 @default.
- W2033134716 hasConcept C2778755073 @default.
- W2033134716 hasConcept C2908647359 @default.
- W2033134716 hasConcept C2993709819 @default.
- W2033134716 hasConcept C33923547 @default.
- W2033134716 hasConcept C38349280 @default.
- W2033134716 hasConcept C41008148 @default.
- W2033134716 hasConcept C43369102 @default.
- W2033134716 hasConcept C62520636 @default.
- W2033134716 hasConcept C6648577 @default.
- W2033134716 hasConcept C86803240 @default.
- W2033134716 hasConceptScore W2033134716C105569014 @default.
- W2033134716 hasConceptScore W2033134716C11413529 @default.
- W2033134716 hasConceptScore W2033134716C121332964 @default.
- W2033134716 hasConceptScore W2033134716C127313418 @default.
- W2033134716 hasConceptScore W2033134716C144024400 @default.
- W2033134716 hasConceptScore W2033134716C149923435 @default.
- W2033134716 hasConceptScore W2033134716C159390177 @default.
- W2033134716 hasConceptScore W2033134716C186060115 @default.
- W2033134716 hasConceptScore W2033134716C187320778 @default.
- W2033134716 hasConceptScore W2033134716C2524010 @default.
- W2033134716 hasConceptScore W2033134716C2778755073 @default.
- W2033134716 hasConceptScore W2033134716C2908647359 @default.
- W2033134716 hasConceptScore W2033134716C2993709819 @default.
- W2033134716 hasConceptScore W2033134716C33923547 @default.
- W2033134716 hasConceptScore W2033134716C38349280 @default.
- W2033134716 hasConceptScore W2033134716C41008148 @default.
- W2033134716 hasConceptScore W2033134716C43369102 @default.
- W2033134716 hasConceptScore W2033134716C62520636 @default.
- W2033134716 hasConceptScore W2033134716C6648577 @default.