Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033182236> ?p ?o ?g. }
- W2033182236 endingPage "49" @default.
- W2033182236 startingPage "38" @default.
- W2033182236 abstract "Dryocosmus kuriphilus Yasumatsu, the Asian chestnut gall wasp (ACGW), is an invasive alien species, which is causing alarm in the chestnut stands of Italy and Europe. It has extensively colonised the Castanea sativa Miller range throughout the country and highly conspicuous, alarming symptoms have appeared on plants. In addition, chestnut trees growing in Mediterranean climates are more frequently subjected to stressful environmental conditions, such as hot-dry periods or extreme weather events, which compromise both yield and productivity. It will be useful, therefore, to gain further insights into the biotic and abiotic disturbances affecting chestnut and their interactions in order to develop management strategies to counteract the loss of productivity. This study was aimed at investigating the effects of ACGW on European chestnut ecophysiology during warm, dry summer conditions, typical of Mediterranean environments. We studied the functional and structural responses of young chestnut sprouts in a coppice stand in the Apennines (Tuscany, Italy), focussing in particular on photosynthetic capacity, leaf morphology, shoot growth, and hydraulic architecture. We also assessed the vulnerability of sprouts to chestnut blight Cryphonectria parasitica (Murrill) Barr. ACGW is a gall-making insect with strong dispersal potential. It spends its larval stages inside the chestnut buds and grows to adult state inside galls, which are located mainly on the main leaf axis or petiole. In this study, we found a reduction of about 30% in CO2 assimilation and stomatal conductance in the blades of galled leaves. PSII efficiency (ΦPO) was not negatively affected by the presence of galls, although lower electron transport to PSI acceptors (ΔVIP) was found in galled leaves, which could have negative consequences for NADP+ production and carboxylation. ACGW strongly affected the photosynthesizing leaf area, which was reduced by about 40% compared with a non-galled leaf. Carbohydrate concentration was higher in leaf blades while galls were richer in starch. Shoot vigour was affected by a massive presence of ACGW, resulting in a smaller leaf area and biomass, and very low capacity for water transport through the wood xylem compared with vigorous shoots. In fact, compared with vigorous shoots, non-vigorous shoots had a higher percentage of impaired xylem conductive area (5.7% vs. 1.3%) and a higher number of obstructed vessels per mm2 (31.2 vs. 7.4). Assessment of shoot vulnerability to chestnut blight revealed a prevalence of hypovirulence in blight infections, probably not directly due to ACGW, but instead related to loss of vigour in the shoot. However, ACGW could play a role in the appearance and spread of Gnomoniopsis sp., which was the most common endophyte on vigorous and non-vigorous shoots and the main coloniser of old galls. ACGW is opening up unpredictable scenarios in European chestnut forests, which are also susceptible to environmental stress factors. Therefore, the simultaneous study of disturbance dynamics and chestnut response, and advanced monitoring of insect spread and climate change would allow timely and effective implementation of adaptive forest management strategies." @default.
- W2033182236 created "2016-06-24" @default.
- W2033182236 creator A5021905766 @default.
- W2033182236 creator A5034652710 @default.
- W2033182236 creator A5034789026 @default.
- W2033182236 creator A5046924444 @default.
- W2033182236 creator A5049767138 @default.
- W2033182236 creator A5050131045 @default.
- W2033182236 creator A5061613013 @default.
- W2033182236 date "2014-02-01" @default.
- W2033182236 modified "2023-10-14" @default.
- W2033182236 title "Ecophysiological responses and vulnerability to other pathologies in European chestnut coppices, heavily infested by the Asian chestnut gall wasp" @default.
- W2033182236 cites W1482056195 @default.
- W2033182236 cites W1499991744 @default.
- W2033182236 cites W1505041208 @default.
- W2033182236 cites W1601082043 @default.
- W2033182236 cites W1875992521 @default.
- W2033182236 cites W1963588311 @default.
- W2033182236 cites W1963878946 @default.
- W2033182236 cites W1964601995 @default.
- W2033182236 cites W1967684175 @default.
- W2033182236 cites W1980335280 @default.
- W2033182236 cites W1982927068 @default.
- W2033182236 cites W1993342154 @default.
- W2033182236 cites W2011339772 @default.
- W2033182236 cites W2020170104 @default.
- W2033182236 cites W2029269101 @default.
- W2033182236 cites W2032739979 @default.
- W2033182236 cites W2038678628 @default.
- W2033182236 cites W204374657 @default.
- W2033182236 cites W2055710667 @default.
- W2033182236 cites W2056458483 @default.
- W2033182236 cites W2061216624 @default.
- W2033182236 cites W2068459467 @default.
- W2033182236 cites W2071210262 @default.
- W2033182236 cites W2072101168 @default.
- W2033182236 cites W2074198057 @default.
- W2033182236 cites W2082880767 @default.
- W2033182236 cites W2102536096 @default.
- W2033182236 cites W2104169871 @default.
- W2033182236 cites W2117329063 @default.
- W2033182236 cites W2117624019 @default.
- W2033182236 cites W2123522025 @default.
- W2033182236 cites W2124009335 @default.
- W2033182236 cites W2134436825 @default.
- W2033182236 cites W2137745919 @default.
- W2033182236 cites W2143552454 @default.
- W2033182236 cites W2146827957 @default.
- W2033182236 cites W2151329298 @default.
- W2033182236 cites W2151453463 @default.
- W2033182236 cites W2163541402 @default.
- W2033182236 cites W2170594338 @default.
- W2033182236 cites W2171747193 @default.
- W2033182236 cites W2171814663 @default.
- W2033182236 cites W2258647781 @default.
- W2033182236 cites W2272068279 @default.
- W2033182236 cites W4237412205 @default.
- W2033182236 doi "https://doi.org/10.1016/j.foreco.2013.11.031" @default.
- W2033182236 hasPublicationYear "2014" @default.
- W2033182236 type Work @default.
- W2033182236 sameAs 2033182236 @default.
- W2033182236 citedByCount "24" @default.
- W2033182236 countsByYear W20331822362014 @default.
- W2033182236 countsByYear W20331822362015 @default.
- W2033182236 countsByYear W20331822362016 @default.
- W2033182236 countsByYear W20331822362017 @default.
- W2033182236 countsByYear W20331822362018 @default.
- W2033182236 countsByYear W20331822362019 @default.
- W2033182236 countsByYear W20331822362020 @default.
- W2033182236 countsByYear W20331822362021 @default.
- W2033182236 countsByYear W20331822362022 @default.
- W2033182236 countsByYear W20331822362023 @default.
- W2033182236 crossrefType "journal-article" @default.
- W2033182236 hasAuthorship W2033182236A5021905766 @default.
- W2033182236 hasAuthorship W2033182236A5034652710 @default.
- W2033182236 hasAuthorship W2033182236A5034789026 @default.
- W2033182236 hasAuthorship W2033182236A5046924444 @default.
- W2033182236 hasAuthorship W2033182236A5049767138 @default.
- W2033182236 hasAuthorship W2033182236A5050131045 @default.
- W2033182236 hasAuthorship W2033182236A5061613013 @default.
- W2033182236 hasConcept C104317684 @default.
- W2033182236 hasConcept C18903297 @default.
- W2033182236 hasConcept C2776502905 @default.
- W2033182236 hasConcept C2777451525 @default.
- W2033182236 hasConcept C2778572240 @default.
- W2033182236 hasConcept C2779513598 @default.
- W2033182236 hasConcept C2779678110 @default.
- W2033182236 hasConcept C2780653484 @default.
- W2033182236 hasConcept C2781226944 @default.
- W2033182236 hasConcept C55493867 @default.
- W2033182236 hasConcept C59822182 @default.
- W2033182236 hasConcept C60987743 @default.
- W2033182236 hasConcept C86803240 @default.
- W2033182236 hasConceptScore W2033182236C104317684 @default.
- W2033182236 hasConceptScore W2033182236C18903297 @default.
- W2033182236 hasConceptScore W2033182236C2776502905 @default.
- W2033182236 hasConceptScore W2033182236C2777451525 @default.
- W2033182236 hasConceptScore W2033182236C2778572240 @default.