Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033223984> ?p ?o ?g. }
- W2033223984 endingPage "32" @default.
- W2033223984 startingPage "23" @default.
- W2033223984 abstract "Understanding the properties of hydrated electrons, which were first observed using pulse radiolysis of water in 1962, is crucial because they are key species in many radiation chemistry processes. Although time-resolved spectroscopic studies and molecular simulations have shown that an electron in water (prepared, for example, by water photoionization) relaxes quickly to a localized, cavity-like structure ∼2.5 Å in radius, this picture has recently been questioned. In another experimental approach, negatively charged water clusters of increasing size were studied with photoelectron and IR spectroscopies. Although small water clusters can bind an excess electron, their character is very different from bulk hydrated species. As data on electron binding in liquid water have become directly accessible experimentally, the cluster-to-bulk extrapolations have become a topic of lively debate. Quantum electronic structure calculations addressing experimental measurables have, until recently, been largely limited to small clusters; extended systems were approached mainly with pseudopotential calculations combining a classical description of water with a quantum mechanical treatment of the excess electron. In this Account, we discuss our investigations of electrons solvated in water by means of ab initio molecular dynamics simulations. This approach, applied to a model system of a negatively charged cluster of 32 water molecules, allows us to characterize structural, dynamical, and reactive aspects of the hydrated electron using all of the system's valence electrons. We show that under ambient conditions, the electron localizes into a cavity close to the surface of the liquid cluster. This cavity is, however, more flexible and accessible to water molecules than an analogous area around negatively charged ions. The dynamical process of electron attachment to a neutral water cluster is strongly temperature dependent. Under ambient conditions, the electron relaxes in the liquid cluster and becomes indistinguishable from an equilibrated, solvated electron on a picosecond time scale. In contrast, for solid, cryogenic systems, the electron only partially localizes outside of the cluster, being trapped in a metastable, weakly bound cushion-like state. Strongly bound states under cryogenic conditions could only be prepared by cooling equilibrated, liquid, negatively charged clusters. These calculations allow us to rationalize how different isomers of electrons in cryogenic clusters can be observed experimentally. Our results also bring into question the direct extrapolation of properties of cryogenic, negatively charged water clusters to those of electrons in the bulk liquid. Ab initio molecular dynamics represents a unique computational tool for investigating the reactivity of the solvated electron in water. As a prototype, the electron-proton reaction was followed in the 32-water cluster. In accord with experiment, the molecular mechanism is a proton transfer process that is not diffusion limited, but rather controlled by a proton-induced deformation of the excess electron's solvent shell. We demonstrate the necessary ingredients of a successful density functional methodology for the hydrated electron that avoids potential pitfalls, such as self-interaction error, insufficient basis set, or lack of dispersion interactions. We also benchmark the density functional theory methods and outline the path to faithful ab initio simulations of dynamics and reactivity of electrons solvated in extended aqueous systems." @default.
- W2033223984 created "2016-06-24" @default.
- W2033223984 creator A5016432225 @default.
- W2033223984 creator A5046896923 @default.
- W2033223984 creator A5059769803 @default.
- W2033223984 creator A5063109605 @default.
- W2033223984 date "2011-09-07" @default.
- W2033223984 modified "2023-10-02" @default.
- W2033223984 title "Structure, Dynamics, and Reactivity of Hydrated Electrons by Ab Initio Molecular Dynamics" @default.
- W2033223984 cites W1964752287 @default.
- W2033223984 cites W1966383675 @default.
- W2033223984 cites W1966436091 @default.
- W2033223984 cites W1977446716 @default.
- W2033223984 cites W1977741966 @default.
- W2033223984 cites W1978225349 @default.
- W2033223984 cites W1980437104 @default.
- W2033223984 cites W1984837477 @default.
- W2033223984 cites W1989060947 @default.
- W2033223984 cites W1994470089 @default.
- W2033223984 cites W2000770615 @default.
- W2033223984 cites W2004230883 @default.
- W2033223984 cites W2004897094 @default.
- W2033223984 cites W2006627598 @default.
- W2033223984 cites W2007233074 @default.
- W2033223984 cites W2007293758 @default.
- W2033223984 cites W2014166972 @default.
- W2033223984 cites W2016058684 @default.
- W2033223984 cites W2020786332 @default.
- W2033223984 cites W2021267610 @default.
- W2033223984 cites W2025424960 @default.
- W2033223984 cites W2025523626 @default.
- W2033223984 cites W2034752401 @default.
- W2033223984 cites W2040345360 @default.
- W2033223984 cites W2042318520 @default.
- W2033223984 cites W2044591029 @default.
- W2033223984 cites W2044648937 @default.
- W2033223984 cites W2053535360 @default.
- W2033223984 cites W2053539804 @default.
- W2033223984 cites W2053947166 @default.
- W2033223984 cites W2058373851 @default.
- W2033223984 cites W2059195721 @default.
- W2033223984 cites W2061166453 @default.
- W2033223984 cites W2062613821 @default.
- W2033223984 cites W2063508049 @default.
- W2033223984 cites W2069036464 @default.
- W2033223984 cites W2069463346 @default.
- W2033223984 cites W2071551596 @default.
- W2033223984 cites W2074535838 @default.
- W2033223984 cites W2075240106 @default.
- W2033223984 cites W2075825548 @default.
- W2033223984 cites W2083401896 @default.
- W2033223984 cites W2089161466 @default.
- W2033223984 cites W2093006445 @default.
- W2033223984 cites W2093902496 @default.
- W2033223984 cites W2105176602 @default.
- W2033223984 cites W2115937072 @default.
- W2033223984 cites W2125002863 @default.
- W2033223984 cites W2126747918 @default.
- W2033223984 cites W2151767184 @default.
- W2033223984 cites W2326019535 @default.
- W2033223984 doi "https://doi.org/10.1021/ar200062m" @default.
- W2033223984 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21899274" @default.
- W2033223984 hasPublicationYear "2011" @default.
- W2033223984 type Work @default.
- W2033223984 sameAs 2033223984 @default.
- W2033223984 citedByCount "93" @default.
- W2033223984 countsByYear W20332239842012 @default.
- W2033223984 countsByYear W20332239842013 @default.
- W2033223984 countsByYear W20332239842014 @default.
- W2033223984 countsByYear W20332239842015 @default.
- W2033223984 countsByYear W20332239842016 @default.
- W2033223984 countsByYear W20332239842017 @default.
- W2033223984 countsByYear W20332239842018 @default.
- W2033223984 countsByYear W20332239842019 @default.
- W2033223984 countsByYear W20332239842020 @default.
- W2033223984 countsByYear W20332239842021 @default.
- W2033223984 countsByYear W20332239842022 @default.
- W2033223984 countsByYear W20332239842023 @default.
- W2033223984 crossrefType "journal-article" @default.
- W2033223984 hasAuthorship W2033223984A5016432225 @default.
- W2033223984 hasAuthorship W2033223984A5046896923 @default.
- W2033223984 hasAuthorship W2033223984A5059769803 @default.
- W2033223984 hasAuthorship W2033223984A5063109605 @default.
- W2033223984 hasBestOaLocation W20332239842 @default.
- W2033223984 hasConcept C112887158 @default.
- W2033223984 hasConcept C121332964 @default.
- W2033223984 hasConcept C132378524 @default.
- W2033223984 hasConcept C145148216 @default.
- W2033223984 hasConcept C147120987 @default.
- W2033223984 hasConcept C147597530 @default.
- W2033223984 hasConcept C147789679 @default.
- W2033223984 hasConcept C158749347 @default.
- W2033223984 hasConcept C159467904 @default.
- W2033223984 hasConcept C164866538 @default.
- W2033223984 hasConcept C178790620 @default.
- W2033223984 hasConcept C184651966 @default.
- W2033223984 hasConcept C184779094 @default.
- W2033223984 hasConcept C185592680 @default.