Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033271074> ?p ?o ?g. }
- W2033271074 endingPage "1448" @default.
- W2033271074 startingPage "1431" @default.
- W2033271074 abstract "The extensive distribution of bamboo forests in South and Southeast Asia plays an important role in the global carbon budget. It is an urgent task to accurately and in good time estimate carbon stock within these areas. In this study, linear regression, partial least-squares (PLS) regression and backpropagation artificial neural network (BP-ANN) with a Gaussian error function as the activation function of the hidden layers (Erf-BP) were used to estimate aboveground carbon (AGC) stock of Moso bamboo in Anji, Zhejiang Province, China. Based on the combined use of Landsat Thematic Mapper (TM) and field measurements, the results indicate that the Erf-BP model provided the best estimation performance, and the linear regression model performed the poorest. This study indicates that remote sensing is an effective way of estimating AGC of Moso bamboo in a large area." @default.
- W2033271074 created "2016-06-24" @default.
- W2033271074 creator A5006691049 @default.
- W2033271074 creator A5007385062 @default.
- W2033271074 creator A5018785606 @default.
- W2033271074 creator A5023828940 @default.
- W2033271074 creator A5030157758 @default.
- W2033271074 creator A5038836690 @default.
- W2033271074 creator A5055406601 @default.
- W2033271074 creator A5057494915 @default.
- W2033271074 date "2011-03-16" @default.
- W2033271074 modified "2023-10-17" @default.
- W2033271074 title "Estimation of aboveground carbon stock of <i>Moso</i> bamboo (<i>Phyllostachys heterocycla</i> var. <i>pubescens)</i> forest with a Landsat Thematic Mapper image" @default.
- W2033271074 cites W1568275358 @default.
- W2033271074 cites W1595051438 @default.
- W2033271074 cites W1966041319 @default.
- W2033271074 cites W1966406940 @default.
- W2033271074 cites W1972923945 @default.
- W2033271074 cites W1977761893 @default.
- W2033271074 cites W1985794062 @default.
- W2033271074 cites W2001666814 @default.
- W2033271074 cites W2002981337 @default.
- W2033271074 cites W2007808016 @default.
- W2033271074 cites W2022500147 @default.
- W2033271074 cites W2040049891 @default.
- W2033271074 cites W2048522468 @default.
- W2033271074 cites W2049402841 @default.
- W2033271074 cites W2066090712 @default.
- W2033271074 cites W2070839470 @default.
- W2033271074 cites W2078925105 @default.
- W2033271074 cites W2088173020 @default.
- W2033271074 cites W2093449654 @default.
- W2033271074 cites W2094434658 @default.
- W2033271074 cites W2098722265 @default.
- W2033271074 cites W2100176513 @default.
- W2033271074 cites W2112442192 @default.
- W2033271074 cites W2113249705 @default.
- W2033271074 cites W2113530671 @default.
- W2033271074 cites W2119709769 @default.
- W2033271074 cites W2124837560 @default.
- W2033271074 cites W2126099406 @default.
- W2033271074 cites W2131023517 @default.
- W2033271074 cites W2133751300 @default.
- W2033271074 cites W2134870022 @default.
- W2033271074 cites W2138482055 @default.
- W2033271074 cites W2150026442 @default.
- W2033271074 cites W2154013934 @default.
- W2033271074 cites W2154674697 @default.
- W2033271074 cites W2155863249 @default.
- W2033271074 cites W2157929592 @default.
- W2033271074 cites W2160873061 @default.
- W2033271074 cites W2166446427 @default.
- W2033271074 cites W3106889297 @default.
- W2033271074 doi "https://doi.org/10.1080/01431160903551389" @default.
- W2033271074 hasPublicationYear "2011" @default.
- W2033271074 type Work @default.
- W2033271074 sameAs 2033271074 @default.
- W2033271074 citedByCount "37" @default.
- W2033271074 countsByYear W20332710742012 @default.
- W2033271074 countsByYear W20332710742013 @default.
- W2033271074 countsByYear W20332710742015 @default.
- W2033271074 countsByYear W20332710742016 @default.
- W2033271074 countsByYear W20332710742017 @default.
- W2033271074 countsByYear W20332710742018 @default.
- W2033271074 countsByYear W20332710742019 @default.
- W2033271074 countsByYear W20332710742020 @default.
- W2033271074 countsByYear W20332710742022 @default.
- W2033271074 crossrefType "journal-article" @default.
- W2033271074 hasAuthorship W2033271074A5006691049 @default.
- W2033271074 hasAuthorship W2033271074A5007385062 @default.
- W2033271074 hasAuthorship W2033271074A5018785606 @default.
- W2033271074 hasAuthorship W2033271074A5023828940 @default.
- W2033271074 hasAuthorship W2033271074A5030157758 @default.
- W2033271074 hasAuthorship W2033271074A5038836690 @default.
- W2033271074 hasAuthorship W2033271074A5055406601 @default.
- W2033271074 hasAuthorship W2033271074A5057494915 @default.
- W2033271074 hasConcept C105795698 @default.
- W2033271074 hasConcept C154945302 @default.
- W2033271074 hasConcept C155032097 @default.
- W2033271074 hasConcept C205649164 @default.
- W2033271074 hasConcept C22354355 @default.
- W2033271074 hasConcept C2775938548 @default.
- W2033271074 hasConcept C2776165127 @default.
- W2033271074 hasConcept C2778102629 @default.
- W2033271074 hasConcept C2778704284 @default.
- W2033271074 hasConcept C33923547 @default.
- W2033271074 hasConcept C39432304 @default.
- W2033271074 hasConcept C41008148 @default.
- W2033271074 hasConcept C48921125 @default.
- W2033271074 hasConcept C50644808 @default.
- W2033271074 hasConcept C59822182 @default.
- W2033271074 hasConcept C62649853 @default.
- W2033271074 hasConcept C83546350 @default.
- W2033271074 hasConcept C86803240 @default.
- W2033271074 hasConcept C97137747 @default.
- W2033271074 hasConceptScore W2033271074C105795698 @default.
- W2033271074 hasConceptScore W2033271074C154945302 @default.
- W2033271074 hasConceptScore W2033271074C155032097 @default.