Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033380066> ?p ?o ?g. }
- W2033380066 endingPage "253" @default.
- W2033380066 startingPage "244" @default.
- W2033380066 abstract "Ordered porous metal nanomaterials have current and future potential applications, for example, as catalysts, as photonic crystals, as sensors, as porous electrodes, as substrates for surface-enhanced Raman scattering (SERS), in separation technology, and in other emerging nanotechnologies. Methods for creating such materials are commonly characterized as “templating”, a technique that involves first the creation of a sacrificial template with a specific porous structure, followed by the filling of these pores with desired metal materials and finally the removal of the starting template, leaving behind a metal replica of the original template. From the viewpoint of practical applications, ordered metal nanostructures with hierarchical porosity, namely, macropores in combination with micropores or mesopores, are of particular interest because macropores allow large guest molecules to access and an efficient mass transport through the porous structures is enabled while the micropores or mesopores enhance the selectivity and the surface area of the metal nanostructures. For this objective, colloidal crystals (or artificial opals) consisting of three-dimensional (3D) long-range ordered arrays of silica or polymer microspheres are ideal starting templates. However, with respect to the colloidal crystal templating strategies for production of ordered porous metal nanostructures, there are two challenging questions for materials scientists: (1) how to uniformly and controllably fill the interstitial space of the colloidal crystal templates and (2) how to generate ordered composite metal nanostructures with hierarchical porosity. This Account reports on recent work in the development and applications of ordered macroporous bimetallic nanostructures in our laboratories. A series of strategies have been explored to address the challenges in colloidal crystal template techniques. By rationally tailoring experimental parameters, we could readily and selectively design different types of ordered bimetallic nanostructures with hierarchical porosity by using a general template technique. The applications of the resulting nanostructures in catalysis and as substrates for SERS are described. Taking the ordered porous Au/Pt nanostructures as examples for applications as catalysts, the experimental results show that both the ordered hollow Au/Pt nanostructure and the ordered macroporous Au/Pt nanostructure exhibit high catalytic ability due to their special structural characteristics, and their catalytic activity is component-dependent. As for SERS applications, primary experimental results show that these ordered macroporous Au/Ag nanostructured films are highly desirable for detection of DNA bases by the SERS technique in terms of a high Raman intensity enhancement, good stability, and reproducibility, suggesting that these nanostructures may find applications in the rapid detection of DNA and DNA fragments." @default.
- W2033380066 created "2016-06-24" @default.
- W2033380066 creator A5034003453 @default.
- W2033380066 creator A5045801140 @default.
- W2033380066 date "2008-01-25" @default.
- W2033380066 modified "2023-10-15" @default.
- W2033380066 title "Ordered Macroporous Bimetallic Nanostructures: Design, Characterization, and Applications" @default.
- W2033380066 cites W1616665557 @default.
- W2033380066 cites W1823269563 @default.
- W2033380066 cites W1978363318 @default.
- W2033380066 cites W1979884986 @default.
- W2033380066 cites W1980458891 @default.
- W2033380066 cites W1980704616 @default.
- W2033380066 cites W1981573459 @default.
- W2033380066 cites W2011029663 @default.
- W2033380066 cites W2014201345 @default.
- W2033380066 cites W2018121729 @default.
- W2033380066 cites W2019568559 @default.
- W2033380066 cites W2022417296 @default.
- W2033380066 cites W2025936225 @default.
- W2033380066 cites W2026791937 @default.
- W2033380066 cites W2035776633 @default.
- W2033380066 cites W2038475623 @default.
- W2033380066 cites W2046516901 @default.
- W2033380066 cites W2055242688 @default.
- W2033380066 cites W2065512152 @default.
- W2033380066 cites W2078820160 @default.
- W2033380066 cites W2086971829 @default.
- W2033380066 cites W2089124524 @default.
- W2033380066 cites W2102675600 @default.
- W2033380066 cites W2104521738 @default.
- W2033380066 cites W2106104005 @default.
- W2033380066 cites W2137188824 @default.
- W2033380066 cites W2155462488 @default.
- W2033380066 cites W2155741111 @default.
- W2033380066 cites W2157292628 @default.
- W2033380066 cites W2158190465 @default.
- W2033380066 cites W2158866032 @default.
- W2033380066 cites W2159357373 @default.
- W2033380066 cites W2164542950 @default.
- W2033380066 cites W2238928914 @default.
- W2033380066 cites W2497302180 @default.
- W2033380066 cites W2770051441 @default.
- W2033380066 doi "https://doi.org/10.1021/ar700143w" @default.
- W2033380066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18217722" @default.
- W2033380066 hasPublicationYear "2008" @default.
- W2033380066 type Work @default.
- W2033380066 sameAs 2033380066 @default.
- W2033380066 citedByCount "139" @default.
- W2033380066 countsByYear W20333800662012 @default.
- W2033380066 countsByYear W20333800662013 @default.
- W2033380066 countsByYear W20333800662014 @default.
- W2033380066 countsByYear W20333800662015 @default.
- W2033380066 countsByYear W20333800662016 @default.
- W2033380066 countsByYear W20333800662017 @default.
- W2033380066 countsByYear W20333800662018 @default.
- W2033380066 countsByYear W20333800662019 @default.
- W2033380066 countsByYear W20333800662021 @default.
- W2033380066 countsByYear W20333800662022 @default.
- W2033380066 countsByYear W20333800662023 @default.
- W2033380066 crossrefType "journal-article" @default.
- W2033380066 hasAuthorship W2033380066A5034003453 @default.
- W2033380066 hasAuthorship W2033380066A5045801140 @default.
- W2033380066 hasConcept C125574357 @default.
- W2033380066 hasConcept C127413603 @default.
- W2033380066 hasConcept C138631740 @default.
- W2033380066 hasConcept C159985019 @default.
- W2033380066 hasConcept C161790260 @default.
- W2033380066 hasConcept C171250308 @default.
- W2033380066 hasConcept C180238147 @default.
- W2033380066 hasConcept C185592680 @default.
- W2033380066 hasConcept C186187911 @default.
- W2033380066 hasConcept C191897082 @default.
- W2033380066 hasConcept C192562407 @default.
- W2033380066 hasConcept C21305988 @default.
- W2033380066 hasConcept C2780841128 @default.
- W2033380066 hasConcept C42360764 @default.
- W2033380066 hasConcept C43411465 @default.
- W2033380066 hasConcept C544153396 @default.
- W2033380066 hasConcept C55493867 @default.
- W2033380066 hasConcept C57924286 @default.
- W2033380066 hasConcept C59789625 @default.
- W2033380066 hasConcept C6648577 @default.
- W2033380066 hasConcept C82714645 @default.
- W2033380066 hasConcept C82776694 @default.
- W2033380066 hasConceptScore W2033380066C125574357 @default.
- W2033380066 hasConceptScore W2033380066C127413603 @default.
- W2033380066 hasConceptScore W2033380066C138631740 @default.
- W2033380066 hasConceptScore W2033380066C159985019 @default.
- W2033380066 hasConceptScore W2033380066C161790260 @default.
- W2033380066 hasConceptScore W2033380066C171250308 @default.
- W2033380066 hasConceptScore W2033380066C180238147 @default.
- W2033380066 hasConceptScore W2033380066C185592680 @default.
- W2033380066 hasConceptScore W2033380066C186187911 @default.
- W2033380066 hasConceptScore W2033380066C191897082 @default.
- W2033380066 hasConceptScore W2033380066C192562407 @default.
- W2033380066 hasConceptScore W2033380066C21305988 @default.
- W2033380066 hasConceptScore W2033380066C2780841128 @default.