Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033406011> ?p ?o ?g. }
- W2033406011 endingPage "1125" @default.
- W2033406011 startingPage "1101" @default.
- W2033406011 abstract "We consider the problem of estimating the density of a random variable when precise measurements on the variable are not available, but replicated proxies contaminated with measurement error are available for sufficiently many subjects. Under the assumption of additive measurement errors this reduces to a problem of deconvolution of densities. Deconvolution methods often make restrictive and unrealistic assumptions about the density of interest and the distribution of measurement errors, for example, normality and homoscedasticity and thus independence from the variable of interest. This article relaxes these assumptions and introduces novel Bayesian semiparametric methodology based on Dirichlet process mixture models for robust deconvolution of densities in the presence of conditionally heteroscedastic measurement errors. In particular, the models can adapt to asymmetry, heavy tails, and multimodality. In simulation experiments, we show that our methods vastly outperform a recent Bayesian approach based on estimating the densities via mixtures of splines. We apply our methods to data from nutritional epidemiology. Even in the special case when the measurement errors are homoscedastic, our methodology is novel and dominates other methods that have been proposed previously. Additional simulation results, instructions on getting access to the dataset and R programs implementing our methods are included as part of online supplementary materials." @default.
- W2033406011 created "2016-06-24" @default.
- W2033406011 creator A5000822072 @default.
- W2033406011 creator A5033365412 @default.
- W2033406011 creator A5047217922 @default.
- W2033406011 creator A5070985864 @default.
- W2033406011 creator A5087117023 @default.
- W2033406011 date "2014-10-02" @default.
- W2033406011 modified "2023-10-14" @default.
- W2033406011 title "Bayesian Semiparametric Density Deconvolution in the Presence of Conditionally Heteroscedastic Measurement Errors" @default.
- W2033406011 cites W1575203075 @default.
- W2033406011 cites W1921729855 @default.
- W2033406011 cites W1964276942 @default.
- W2033406011 cites W1965758235 @default.
- W2033406011 cites W1968715455 @default.
- W2033406011 cites W1990420052 @default.
- W2033406011 cites W1994420078 @default.
- W2033406011 cites W2013100770 @default.
- W2033406011 cites W2022595986 @default.
- W2033406011 cites W2043452208 @default.
- W2033406011 cites W2045761262 @default.
- W2033406011 cites W2052953139 @default.
- W2033406011 cites W2054038223 @default.
- W2033406011 cites W2059029763 @default.
- W2033406011 cites W2065392216 @default.
- W2033406011 cites W2067994512 @default.
- W2033406011 cites W2069429561 @default.
- W2033406011 cites W2073116379 @default.
- W2033406011 cites W2078840655 @default.
- W2033406011 cites W2080972498 @default.
- W2033406011 cites W2082924331 @default.
- W2033406011 cites W2087279974 @default.
- W2033406011 cites W2091797506 @default.
- W2033406011 cites W2099919979 @default.
- W2033406011 cites W2129413941 @default.
- W2033406011 cites W2155723942 @default.
- W2033406011 cites W2161920977 @default.
- W2033406011 cites W2165381860 @default.
- W2033406011 cites W3123551093 @default.
- W2033406011 cites W4255103055 @default.
- W2033406011 cites W4324114579 @default.
- W2033406011 doi "https://doi.org/10.1080/10618600.2014.899237" @default.
- W2033406011 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4219602" @default.
- W2033406011 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25378893" @default.
- W2033406011 hasPublicationYear "2014" @default.
- W2033406011 type Work @default.
- W2033406011 sameAs 2033406011 @default.
- W2033406011 citedByCount "23" @default.
- W2033406011 countsByYear W20334060112013 @default.
- W2033406011 countsByYear W20334060112015 @default.
- W2033406011 countsByYear W20334060112016 @default.
- W2033406011 countsByYear W20334060112017 @default.
- W2033406011 countsByYear W20334060112018 @default.
- W2033406011 countsByYear W20334060112019 @default.
- W2033406011 countsByYear W20334060112020 @default.
- W2033406011 countsByYear W20334060112021 @default.
- W2033406011 countsByYear W20334060112022 @default.
- W2033406011 countsByYear W20334060112023 @default.
- W2033406011 crossrefType "journal-article" @default.
- W2033406011 hasAuthorship W2033406011A5000822072 @default.
- W2033406011 hasAuthorship W2033406011A5033365412 @default.
- W2033406011 hasAuthorship W2033406011A5047217922 @default.
- W2033406011 hasAuthorship W2033406011A5070985864 @default.
- W2033406011 hasAuthorship W2033406011A5087117023 @default.
- W2033406011 hasBestOaLocation W20334060112 @default.
- W2033406011 hasConcept C101104100 @default.
- W2033406011 hasConcept C104409967 @default.
- W2033406011 hasConcept C105795698 @default.
- W2033406011 hasConcept C107673813 @default.
- W2033406011 hasConcept C11413529 @default.
- W2033406011 hasConcept C149782125 @default.
- W2033406011 hasConcept C174576160 @default.
- W2033406011 hasConcept C19619285 @default.
- W2033406011 hasConcept C33923547 @default.
- W2033406011 hasConcept C41008148 @default.
- W2033406011 hasConceptScore W2033406011C101104100 @default.
- W2033406011 hasConceptScore W2033406011C104409967 @default.
- W2033406011 hasConceptScore W2033406011C105795698 @default.
- W2033406011 hasConceptScore W2033406011C107673813 @default.
- W2033406011 hasConceptScore W2033406011C11413529 @default.
- W2033406011 hasConceptScore W2033406011C149782125 @default.
- W2033406011 hasConceptScore W2033406011C174576160 @default.
- W2033406011 hasConceptScore W2033406011C19619285 @default.
- W2033406011 hasConceptScore W2033406011C33923547 @default.
- W2033406011 hasConceptScore W2033406011C41008148 @default.
- W2033406011 hasIssue "4" @default.
- W2033406011 hasLocation W20334060111 @default.
- W2033406011 hasLocation W20334060112 @default.
- W2033406011 hasLocation W20334060113 @default.
- W2033406011 hasLocation W20334060114 @default.
- W2033406011 hasLocation W20334060115 @default.
- W2033406011 hasOpenAccess W2033406011 @default.
- W2033406011 hasPrimaryLocation W20334060111 @default.
- W2033406011 hasRelatedWork W2001847331 @default.
- W2033406011 hasRelatedWork W2008914889 @default.
- W2033406011 hasRelatedWork W2027931249 @default.
- W2033406011 hasRelatedWork W2033406011 @default.
- W2033406011 hasRelatedWork W2163459455 @default.