Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033644819> ?p ?o ?g. }
- W2033644819 endingPage "228" @default.
- W2033644819 startingPage "219" @default.
- W2033644819 abstract "Time series of multispectral images are widely used to monitor and map land cover. However, high dimensionality and missing data present significant challenges for classification algorithms that use multi-temporal remotely sensed data. Further, generation and assessment of high quality training data, including detection of outliers and changed pixels in training data, is difficult. In this paper we present a new statistical framework that is based on a parametric model that enables a targeted principal component analysis (PCA) to reduce the dimensionality of multi-temporal remote sensing data. In doing so, the model provides a novel basis for land cover classification and evaluating the nature and quality of training data used for supervised classifications. The methodology we describe uses a Kronecker operator to reduce the spectral dimensionality of multi-temporal images while preserving their temporal structure, thereby providing low-dimensional data that is well-suited for classification and outlier detection problems. As part of our framework, we use an expectation–maximization method to impute missing data, and propose new metrics that characterize the representativeness and pixel-to-pixel homogeneity of training sites used for supervised classification. To evaluate our approach, we use data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and extracted more than 200 training sites where the land cover has been characterized from high spatial resolution imagery. The original input data was composed of 196 features (28 dates × 7 bands), and the PCA-based approach we describe captured 91% of the variance, in these 7 bands, in 3 components. Results from maximum likelihood classification show that the retained principal components successfully distinguish land cover classes from one another, with classification results that were comparable to supervised machine learning methods applied to the original MODIS data. Analysis of our site composition metrics show that they successfully characterize the homogeneity (or lack thereof) and representativeness of individual pixels and entire sites relative to other training sites in the same class." @default.
- W2033644819 created "2016-06-24" @default.
- W2033644819 creator A5005834311 @default.
- W2033644819 creator A5032477563 @default.
- W2033644819 creator A5037140250 @default.
- W2033644819 creator A5060342351 @default.
- W2033644819 date "2014-11-01" @default.
- W2033644819 modified "2023-09-23" @default.
- W2033644819 title "A parametric model for classifying land cover and evaluating training data based on multi-temporal remote sensing data" @default.
- W2033644819 cites W1509162212 @default.
- W2033644819 cites W1544837360 @default.
- W2033644819 cites W1984381123 @default.
- W2033644819 cites W2000648382 @default.
- W2033644819 cites W2010784770 @default.
- W2033644819 cites W2014634808 @default.
- W2033644819 cites W2018153346 @default.
- W2033644819 cites W2022224360 @default.
- W2033644819 cites W2042692910 @default.
- W2033644819 cites W2060745228 @default.
- W2033644819 cites W2077570405 @default.
- W2033644819 cites W2078974732 @default.
- W2033644819 cites W2095771230 @default.
- W2033644819 cites W2101225175 @default.
- W2033644819 cites W2102200338 @default.
- W2033644819 cites W2106256460 @default.
- W2033644819 cites W2108826313 @default.
- W2033644819 cites W2115651081 @default.
- W2033644819 cites W2127559745 @default.
- W2033644819 cites W2128993230 @default.
- W2033644819 cites W2131448468 @default.
- W2033644819 cites W2131668296 @default.
- W2033644819 cites W2136783177 @default.
- W2033644819 cites W2137336591 @default.
- W2033644819 cites W2138408852 @default.
- W2033644819 cites W2138448722 @default.
- W2033644819 cites W2146904764 @default.
- W2033644819 cites W2153820558 @default.
- W2033644819 cites W2170086526 @default.
- W2033644819 doi "https://doi.org/10.1016/j.isprsjprs.2014.09.004" @default.
- W2033644819 hasPublicationYear "2014" @default.
- W2033644819 type Work @default.
- W2033644819 sameAs 2033644819 @default.
- W2033644819 citedByCount "17" @default.
- W2033644819 countsByYear W20336448192015 @default.
- W2033644819 countsByYear W20336448192016 @default.
- W2033644819 countsByYear W20336448192017 @default.
- W2033644819 countsByYear W20336448192018 @default.
- W2033644819 countsByYear W20336448192020 @default.
- W2033644819 countsByYear W20336448192021 @default.
- W2033644819 countsByYear W20336448192022 @default.
- W2033644819 crossrefType "journal-article" @default.
- W2033644819 hasAuthorship W2033644819A5005834311 @default.
- W2033644819 hasAuthorship W2033644819A5032477563 @default.
- W2033644819 hasAuthorship W2033644819A5037140250 @default.
- W2033644819 hasAuthorship W2033644819A5060342351 @default.
- W2033644819 hasConcept C105795698 @default.
- W2033644819 hasConcept C117251300 @default.
- W2033644819 hasConcept C119857082 @default.
- W2033644819 hasConcept C124101348 @default.
- W2033644819 hasConcept C127413603 @default.
- W2033644819 hasConcept C146978453 @default.
- W2033644819 hasConcept C147176958 @default.
- W2033644819 hasConcept C153180895 @default.
- W2033644819 hasConcept C154945302 @default.
- W2033644819 hasConcept C160633673 @default.
- W2033644819 hasConcept C173163844 @default.
- W2033644819 hasConcept C19269812 @default.
- W2033644819 hasConcept C205649164 @default.
- W2033644819 hasConcept C27438332 @default.
- W2033644819 hasConcept C2777007095 @default.
- W2033644819 hasConcept C2780648208 @default.
- W2033644819 hasConcept C33923547 @default.
- W2033644819 hasConcept C41008148 @default.
- W2033644819 hasConcept C4792198 @default.
- W2033644819 hasConcept C62649853 @default.
- W2033644819 hasConcept C739882 @default.
- W2033644819 hasConcept C79337645 @default.
- W2033644819 hasConcept C9357733 @default.
- W2033644819 hasConceptScore W2033644819C105795698 @default.
- W2033644819 hasConceptScore W2033644819C117251300 @default.
- W2033644819 hasConceptScore W2033644819C119857082 @default.
- W2033644819 hasConceptScore W2033644819C124101348 @default.
- W2033644819 hasConceptScore W2033644819C127413603 @default.
- W2033644819 hasConceptScore W2033644819C146978453 @default.
- W2033644819 hasConceptScore W2033644819C147176958 @default.
- W2033644819 hasConceptScore W2033644819C153180895 @default.
- W2033644819 hasConceptScore W2033644819C154945302 @default.
- W2033644819 hasConceptScore W2033644819C160633673 @default.
- W2033644819 hasConceptScore W2033644819C173163844 @default.
- W2033644819 hasConceptScore W2033644819C19269812 @default.
- W2033644819 hasConceptScore W2033644819C205649164 @default.
- W2033644819 hasConceptScore W2033644819C27438332 @default.
- W2033644819 hasConceptScore W2033644819C2777007095 @default.
- W2033644819 hasConceptScore W2033644819C2780648208 @default.
- W2033644819 hasConceptScore W2033644819C33923547 @default.
- W2033644819 hasConceptScore W2033644819C41008148 @default.
- W2033644819 hasConceptScore W2033644819C4792198 @default.
- W2033644819 hasConceptScore W2033644819C62649853 @default.