Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033704191> ?p ?o ?g. }
- W2033704191 endingPage "1391" @default.
- W2033704191 startingPage "1383" @default.
- W2033704191 abstract "An analog of Koopmans’ theorem is formulated for the energies, ε a , of virtual Kohn–Sham (KS) molecular orbitals (MOs) from the requirement that the KS theory provides, in principle, not only the exact electron density, but also its exact response. The starting point is the Kohn–Sham analog of Koopmans’ theorem, relating the vertical ionization energies, I i , to the energies, ε i , of the occupied MOs ( Chong, D.P.; Gritsenko, O.V.; Baerends, E.J. J. Chem. Phys. 2002, 116, 1760 ). Combining this with the coupled-perturbed equations of time-dependent density functional theory (TDDFT), exact relations between the energies, ε a , of virtual KS MOs and the excitation energies, ω ia , and vertical ionization energies (VIPs), I i , are obtained. In the small matrix approximation for the coupling matrix K of TDDFT, two limiting cases of these relations are considered. In the limit of a negligible matrix element, K ia,ia , the energy, ε a , can be interpreted as (minus) the energy of ionization from the ? i → ? a excited state, ε a ≈ –I a , where –I a is defined from the relation I i = ω ia + I a . This relation breaks down in special cases, such as charge-transfer transitions and the HOMO–LUMO (highest occupied molecular orbital – lowest unoccupied molecular orbital) transition of a dissociating electron-pair bond (also of charge-transfer character). The present results highlight the important difference between virtual orbital energies in the Kohn–Sham model (ε a ≈ –I a ) and in the Hartree–Fock model (ε a ≈ –A a ). Kohn–Sham differences ε a – ε i approximate the excitation energy, ω ia , while Hartree–Fock differences [Formula: see text] do not approximate excitation energies but approximate the difference of an ionization energy and an electron affinity, I i – A a ." @default.
- W2033704191 created "2016-06-24" @default.
- W2033704191 creator A5029676676 @default.
- W2033704191 creator A5039147015 @default.
- W2033704191 date "2009-10-01" @default.
- W2033704191 modified "2023-09-25" @default.
- W2033704191 title "The analog of Koopmans’ theorem for virtual Kohn–Sham orbital energies" @default.
- W2033704191 cites W1965173894 @default.
- W2033704191 cites W1970512969 @default.
- W2033704191 cites W1977301423 @default.
- W2033704191 cites W1977462511 @default.
- W2033704191 cites W1983852130 @default.
- W2033704191 cites W1986892587 @default.
- W2033704191 cites W1991300868 @default.
- W2033704191 cites W1993031410 @default.
- W2033704191 cites W1995070318 @default.
- W2033704191 cites W1998357289 @default.
- W2033704191 cites W2007553616 @default.
- W2033704191 cites W2007805650 @default.
- W2033704191 cites W2009487380 @default.
- W2033704191 cites W2012279747 @default.
- W2033704191 cites W2030976617 @default.
- W2033704191 cites W2039824802 @default.
- W2033704191 cites W2041102233 @default.
- W2033704191 cites W2046668457 @default.
- W2033704191 cites W2050056663 @default.
- W2033704191 cites W2055083970 @default.
- W2033704191 cites W2055208155 @default.
- W2033704191 cites W2063663126 @default.
- W2033704191 cites W2068228867 @default.
- W2033704191 cites W2069197437 @default.
- W2033704191 cites W2077611146 @default.
- W2033704191 cites W2086458318 @default.
- W2033704191 cites W2086793852 @default.
- W2033704191 cites W2110508988 @default.
- W2033704191 cites W2112091039 @default.
- W2033704191 cites W2113387506 @default.
- W2033704191 cites W2120917163 @default.
- W2033704191 cites W2129321824 @default.
- W2033704191 cites W2143553746 @default.
- W2033704191 cites W2187439399 @default.
- W2033704191 cites W2230728100 @default.
- W2033704191 cites W2396016254 @default.
- W2033704191 cites W3144642009 @default.
- W2033704191 cites W4231015377 @default.
- W2033704191 cites W73583073 @default.
- W2033704191 doi "https://doi.org/10.1139/v09-088" @default.
- W2033704191 hasPublicationYear "2009" @default.
- W2033704191 type Work @default.
- W2033704191 sameAs 2033704191 @default.
- W2033704191 citedByCount "29" @default.
- W2033704191 countsByYear W20337041912012 @default.
- W2033704191 countsByYear W20337041912013 @default.
- W2033704191 countsByYear W20337041912014 @default.
- W2033704191 countsByYear W20337041912015 @default.
- W2033704191 countsByYear W20337041912016 @default.
- W2033704191 countsByYear W20337041912017 @default.
- W2033704191 countsByYear W20337041912018 @default.
- W2033704191 countsByYear W20337041912020 @default.
- W2033704191 countsByYear W20337041912022 @default.
- W2033704191 countsByYear W20337041912023 @default.
- W2033704191 crossrefType "journal-article" @default.
- W2033704191 hasAuthorship W2033704191A5029676676 @default.
- W2033704191 hasAuthorship W2033704191A5039147015 @default.
- W2033704191 hasConcept C121332964 @default.
- W2033704191 hasConcept C139358910 @default.
- W2033704191 hasConcept C14158195 @default.
- W2033704191 hasConcept C145148216 @default.
- W2033704191 hasConcept C147120987 @default.
- W2033704191 hasConcept C147192597 @default.
- W2033704191 hasConcept C147597530 @default.
- W2033704191 hasConcept C152365726 @default.
- W2033704191 hasConcept C181500209 @default.
- W2033704191 hasConcept C184779094 @default.
- W2033704191 hasConcept C185592680 @default.
- W2033704191 hasConcept C189394030 @default.
- W2033704191 hasConcept C198291218 @default.
- W2033704191 hasConcept C20853536 @default.
- W2033704191 hasConcept C32909587 @default.
- W2033704191 hasConcept C62520636 @default.
- W2033704191 hasConcept C9059619 @default.
- W2033704191 hasConceptScore W2033704191C121332964 @default.
- W2033704191 hasConceptScore W2033704191C139358910 @default.
- W2033704191 hasConceptScore W2033704191C14158195 @default.
- W2033704191 hasConceptScore W2033704191C145148216 @default.
- W2033704191 hasConceptScore W2033704191C147120987 @default.
- W2033704191 hasConceptScore W2033704191C147192597 @default.
- W2033704191 hasConceptScore W2033704191C147597530 @default.
- W2033704191 hasConceptScore W2033704191C152365726 @default.
- W2033704191 hasConceptScore W2033704191C181500209 @default.
- W2033704191 hasConceptScore W2033704191C184779094 @default.
- W2033704191 hasConceptScore W2033704191C185592680 @default.
- W2033704191 hasConceptScore W2033704191C189394030 @default.
- W2033704191 hasConceptScore W2033704191C198291218 @default.
- W2033704191 hasConceptScore W2033704191C20853536 @default.
- W2033704191 hasConceptScore W2033704191C32909587 @default.
- W2033704191 hasConceptScore W2033704191C62520636 @default.
- W2033704191 hasConceptScore W2033704191C9059619 @default.