Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033777632> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2033777632 abstract "This paper is concerned with complemented modular lattices containing the elements 0 and I. The first part treats of homomorphisms of the lattice L, their existence, determination and invariant properties. The second considers norms (i.e., sharply positive or, alternatively, strictly monotone modular functionals) and quasi-norms (i.e., positive or monotone modular functionals) on L, their interconnections, and necessary and sufficient conditions for their unicity up to linear transformations. There are six main parts to the paper, as follows: 1. The homomorphism theorem. The dual concepts of a--ideal and r-ideal are defined for general lattices. Duality is essential throughout the paper. The C-operator, which takes all elements of a subset of L into their complements, is introduced, and C-neutral ideals are defined as those which appear in complementary pairs a, a. Theorems 1 and 2 state that any C-neutral pair of ideals determine a congruence in L by means of any one of six equivalent conditions. These conditions are recognizable as those appearing in Boolean algebra, but the proof of their equivalence in the general case considered here is far from trivial, since it requires the fundamental Lemma 7. Theorem 3 states that all congruences are thus obtained from C-neutral ideals. Quotient lattices L/a are defined, and it is obvious that every homomorph of L is equivalent to an L/a. For example, consider a regular Caratheodory measure in a metric space, the measure of the space being 1. In the Boolean algebra of measurable sets, the sets of measure 0 and measure 1 are complementary C-neutral ideals, the first a-, the second 7r, and the quotient lattice is isomorphic with a sublattice of the Gs's. 2. The preservation of normal ideals under homomorphism. The operators c,, cX, and ', are defined. By means of the first two we define normal ideals, the upper and lower segments of MacNeille's cuts, whose main reason for existence is to make up for the gaps when L is not complete. The main theorem (Theorem 7) states that a homomorphism preserves normality for bDa; and the pre-image of a normal ideal is normal if a is normal. The preliminaries to Theorem 7 state in effect that the operators C, c, and ' preserve complementary C-neutrality for pairs of ideals, yielding by iteration at most three pairs from a given a and a. It follows that normality in our definition is a proper generalization of Stone's in a Boolean algebra. Lemma 12 gives a connection between neutrality and distributivity parallel to that for complementary neutral elements, a, a." @default.
- W2033777632 created "2016-06-24" @default.
- W2033777632 creator A5050523801 @default.
- W2033777632 date "1942-01-01" @default.
- W2033777632 modified "2023-10-14" @default.
- W2033777632 title "Homomorphisms and modular functionals" @default.
- W2033777632 doi "https://doi.org/10.1090/s0002-9947-1942-0006145-0" @default.
- W2033777632 hasPublicationYear "1942" @default.
- W2033777632 type Work @default.
- W2033777632 sameAs 2033777632 @default.
- W2033777632 citedByCount "0" @default.
- W2033777632 crossrefType "journal-article" @default.
- W2033777632 hasAuthorship W2033777632A5050523801 @default.
- W2033777632 hasBestOaLocation W20337776321 @default.
- W2033777632 hasConcept C111472728 @default.
- W2033777632 hasConcept C114614502 @default.
- W2033777632 hasConcept C118211362 @default.
- W2033777632 hasConcept C118615104 @default.
- W2033777632 hasConcept C138885662 @default.
- W2033777632 hasConcept C16310669 @default.
- W2033777632 hasConcept C199422724 @default.
- W2033777632 hasConcept C202444582 @default.
- W2033777632 hasConcept C2524010 @default.
- W2033777632 hasConcept C2776639384 @default.
- W2033777632 hasConcept C2834757 @default.
- W2033777632 hasConcept C33923547 @default.
- W2033777632 hasConcept C4042151 @default.
- W2033777632 hasConcept C40753290 @default.
- W2033777632 hasConcept C9973445 @default.
- W2033777632 hasConceptScore W2033777632C111472728 @default.
- W2033777632 hasConceptScore W2033777632C114614502 @default.
- W2033777632 hasConceptScore W2033777632C118211362 @default.
- W2033777632 hasConceptScore W2033777632C118615104 @default.
- W2033777632 hasConceptScore W2033777632C138885662 @default.
- W2033777632 hasConceptScore W2033777632C16310669 @default.
- W2033777632 hasConceptScore W2033777632C199422724 @default.
- W2033777632 hasConceptScore W2033777632C202444582 @default.
- W2033777632 hasConceptScore W2033777632C2524010 @default.
- W2033777632 hasConceptScore W2033777632C2776639384 @default.
- W2033777632 hasConceptScore W2033777632C2834757 @default.
- W2033777632 hasConceptScore W2033777632C33923547 @default.
- W2033777632 hasConceptScore W2033777632C4042151 @default.
- W2033777632 hasConceptScore W2033777632C40753290 @default.
- W2033777632 hasConceptScore W2033777632C9973445 @default.
- W2033777632 hasLocation W20337776321 @default.
- W2033777632 hasOpenAccess W2033777632 @default.
- W2033777632 hasPrimaryLocation W20337776321 @default.
- W2033777632 hasRelatedWork W2084628061 @default.
- W2033777632 hasRelatedWork W2189358516 @default.
- W2033777632 hasRelatedWork W2281116448 @default.
- W2033777632 hasRelatedWork W2328344866 @default.
- W2033777632 hasRelatedWork W2554204837 @default.
- W2033777632 hasRelatedWork W2728260005 @default.
- W2033777632 hasRelatedWork W2742681452 @default.
- W2033777632 hasRelatedWork W2805978580 @default.
- W2033777632 hasRelatedWork W2914260991 @default.
- W2033777632 hasRelatedWork W2920702908 @default.
- W2033777632 hasRelatedWork W2945021571 @default.
- W2033777632 hasRelatedWork W2951518643 @default.
- W2033777632 hasRelatedWork W2962858660 @default.
- W2033777632 hasRelatedWork W2962894191 @default.
- W2033777632 hasRelatedWork W2963738510 @default.
- W2033777632 hasRelatedWork W2964091488 @default.
- W2033777632 hasRelatedWork W2980575988 @default.
- W2033777632 hasRelatedWork W2990051500 @default.
- W2033777632 hasRelatedWork W3138113339 @default.
- W2033777632 hasRelatedWork W3182458503 @default.
- W2033777632 isParatext "false" @default.
- W2033777632 isRetracted "false" @default.
- W2033777632 magId "2033777632" @default.
- W2033777632 workType "article" @default.