Matches in SemOpenAlex for { <https://semopenalex.org/work/W2033992723> ?p ?o ?g. }
- W2033992723 endingPage "44" @default.
- W2033992723 startingPage "3" @default.
- W2033992723 abstract "If (f: mathbb{R}^{n} to mathbb{R}) is twice continuously differentiable, f′(u)=0 and f″(u) is positive definite, then u is a local minimizer of f. This paper surveys the extension of this well known second order sufficient optimality condition to the case (f: U to mathbb{R}), where U is an infinite-dimensional linear normed space. The reader will be guided from the case of finite dimensions via a brief discussion of the calculus of variations and the optimal control of ordinary differential equations to the control of nonlinear partial differential equations, where U is a function space. In particular, the following questions will be addressed: Is the extension to infinite dimensions straightforward or will unexpected difficulties occur? How have second order sufficient optimality conditions to be modified, if simple inequality constraints are imposed on u? Why do we need second order conditions and how can they be applied? If they are important, are we able to check if they are fulfilled?" @default.
- W2033992723 created "2016-06-24" @default.
- W2033992723 creator A5067757319 @default.
- W2033992723 creator A5082981580 @default.
- W2033992723 date "2014-12-04" @default.
- W2033992723 modified "2023-10-11" @default.
- W2033992723 title "Second Order Optimality Conditions and Their Role in PDE Control" @default.
- W2033992723 cites W153052114 @default.
- W2033992723 cites W1601741115 @default.
- W2033992723 cites W1963754437 @default.
- W2033992723 cites W1969031634 @default.
- W2033992723 cites W1978282183 @default.
- W2033992723 cites W1979165327 @default.
- W2033992723 cites W1981159109 @default.
- W2033992723 cites W1981611107 @default.
- W2033992723 cites W1982312692 @default.
- W2033992723 cites W1983597831 @default.
- W2033992723 cites W1983766238 @default.
- W2033992723 cites W1986476868 @default.
- W2033992723 cites W1988428054 @default.
- W2033992723 cites W1991309447 @default.
- W2033992723 cites W1992712041 @default.
- W2033992723 cites W2002230262 @default.
- W2033992723 cites W2005515783 @default.
- W2033992723 cites W2009134079 @default.
- W2033992723 cites W2010533236 @default.
- W2033992723 cites W2013815604 @default.
- W2033992723 cites W2018383942 @default.
- W2033992723 cites W2029123910 @default.
- W2033992723 cites W2030036911 @default.
- W2033992723 cites W2031821805 @default.
- W2033992723 cites W2032742413 @default.
- W2033992723 cites W2036112861 @default.
- W2033992723 cites W2037124131 @default.
- W2033992723 cites W2040772515 @default.
- W2033992723 cites W2042153418 @default.
- W2033992723 cites W2046745855 @default.
- W2033992723 cites W2046922593 @default.
- W2033992723 cites W2048164789 @default.
- W2033992723 cites W2053197085 @default.
- W2033992723 cites W2054143867 @default.
- W2033992723 cites W2058731469 @default.
- W2033992723 cites W2059184141 @default.
- W2033992723 cites W2060073982 @default.
- W2033992723 cites W2064180255 @default.
- W2033992723 cites W2066910312 @default.
- W2033992723 cites W2067024715 @default.
- W2033992723 cites W2067251484 @default.
- W2033992723 cites W2068222787 @default.
- W2033992723 cites W2069326267 @default.
- W2033992723 cites W2078760286 @default.
- W2033992723 cites W2080709116 @default.
- W2033992723 cites W2085831953 @default.
- W2033992723 cites W2087837558 @default.
- W2033992723 cites W2091229997 @default.
- W2033992723 cites W2094071750 @default.
- W2033992723 cites W2099187870 @default.
- W2033992723 cites W2103468410 @default.
- W2033992723 cites W2105253623 @default.
- W2033992723 cites W2106853513 @default.
- W2033992723 cites W2112867735 @default.
- W2033992723 cites W2122106895 @default.
- W2033992723 cites W2130595122 @default.
- W2033992723 cites W2132490216 @default.
- W2033992723 cites W2139473935 @default.
- W2033992723 cites W2139679524 @default.
- W2033992723 cites W2151353012 @default.
- W2033992723 cites W2157713021 @default.
- W2033992723 cites W2164411545 @default.
- W2033992723 cites W2185682211 @default.
- W2033992723 cites W2225782853 @default.
- W2033992723 cites W2254304579 @default.
- W2033992723 cites W2597248869 @default.
- W2033992723 cites W4238739013 @default.
- W2033992723 cites W4250028192 @default.
- W2033992723 cites W4293775970 @default.
- W2033992723 cites W581038412 @default.
- W2033992723 doi "https://doi.org/10.1365/s13291-014-0109-3" @default.
- W2033992723 hasPublicationYear "2014" @default.
- W2033992723 type Work @default.
- W2033992723 sameAs 2033992723 @default.
- W2033992723 citedByCount "59" @default.
- W2033992723 countsByYear W20339927232014 @default.
- W2033992723 countsByYear W20339927232015 @default.
- W2033992723 countsByYear W20339927232016 @default.
- W2033992723 countsByYear W20339927232017 @default.
- W2033992723 countsByYear W20339927232018 @default.
- W2033992723 countsByYear W20339927232019 @default.
- W2033992723 countsByYear W20339927232020 @default.
- W2033992723 countsByYear W20339927232021 @default.
- W2033992723 countsByYear W20339927232022 @default.
- W2033992723 countsByYear W20339927232023 @default.
- W2033992723 crossrefType "journal-article" @default.
- W2033992723 hasAuthorship W2033992723A5067757319 @default.
- W2033992723 hasAuthorship W2033992723A5082981580 @default.
- W2033992723 hasBestOaLocation W20339927232 @default.
- W2033992723 hasConcept C10138342 @default.
- W2033992723 hasConcept C126255220 @default.