Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034084511> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2034084511 endingPage "1025" @default.
- W2034084511 startingPage "1017" @default.
- W2034084511 abstract "Let D be the set of differential operators on functions defined on R3, Let alpha (p), p=0,1,2 and 3 be scalar, vector, pseudovector and density fields on R3, respectively. Then alpha (p) can be regarded as a multilinear map Dp to D. Let r0,...,rp in R3 and let (r0,...,rp) be the Euclidean p-simplex having these vertices. Then the integral of alpha (p) over (r0,...,rp) is a function F( alpha (p)) (r0,...,rp) which satisfies Fd alpha = delta ASFalpha . Here d alpha (p) means grad alpha (0), curl alpha (1) or div alpha (2), and delta AS is a natural cohomological operator (the usual Alexander-Spanier co-boundary operator). For any function F(r0,...,rp) there is a natural map Phi F:Dp to D which satisfies Phi ( delta ASF)= delta H Phi F Where delta H is the Hochschild co-boundary for co-chains Phi F on D. Thus, when alpha (p) is regarded as being the cochain Phi (F alpha (p)) on D, grad, curl and div all become Hochschild co-boundary operators: grad alpha (0)(H) is the commutator of the operator H with the function alpha (0) and curl alpha (1)(H1,H2) measures the amount by which alpha (1) fails to be a derivation on D. If div alpha (2)=0 then alpha (2) provides a deformation of the composition product on D. This new viewpoint of fields as operator-valued maps of p-tuples of operators has implications in several areas of physics and mathematics. One consequence is that the Hamiltonian in quantum mechanics may be regarded as its own probability current density operator. Another is that Maxwell's equations describe the algebraic character of the electric and magnetic fields E and B regarded as co-chains on D. We give some explicit formulae for alpha (p)(H1,...,Hp)." @default.
- W2034084511 created "2016-06-24" @default.
- W2034084511 creator A5020395935 @default.
- W2034084511 creator A5090807094 @default.
- W2034084511 date "1995-02-21" @default.
- W2034084511 modified "2023-09-27" @default.
- W2034084511 title "Addendum to vector calculus: fields as co-chains of differential operators" @default.
- W2034084511 cites W2069062732 @default.
- W2034084511 doi "https://doi.org/10.1088/0305-4470/28/4/024" @default.
- W2034084511 hasPublicationYear "1995" @default.
- W2034084511 type Work @default.
- W2034084511 sameAs 2034084511 @default.
- W2034084511 citedByCount "1" @default.
- W2034084511 crossrefType "journal-article" @default.
- W2034084511 hasAuthorship W2034084511A5020395935 @default.
- W2034084511 hasAuthorship W2034084511A5090807094 @default.
- W2034084511 hasConcept C104317684 @default.
- W2034084511 hasConcept C114614502 @default.
- W2034084511 hasConcept C115071613 @default.
- W2034084511 hasConcept C136119220 @default.
- W2034084511 hasConcept C145620117 @default.
- W2034084511 hasConcept C147663694 @default.
- W2034084511 hasConcept C158448853 @default.
- W2034084511 hasConcept C17020691 @default.
- W2034084511 hasConcept C185592680 @default.
- W2034084511 hasConcept C199360897 @default.
- W2034084511 hasConcept C202444582 @default.
- W2034084511 hasConcept C2524010 @default.
- W2034084511 hasConcept C33923547 @default.
- W2034084511 hasConcept C41008148 @default.
- W2034084511 hasConcept C55493867 @default.
- W2034084511 hasConcept C57691317 @default.
- W2034084511 hasConcept C70915906 @default.
- W2034084511 hasConcept C73648015 @default.
- W2034084511 hasConcept C86339819 @default.
- W2034084511 hasConcept C91188154 @default.
- W2034084511 hasConceptScore W2034084511C104317684 @default.
- W2034084511 hasConceptScore W2034084511C114614502 @default.
- W2034084511 hasConceptScore W2034084511C115071613 @default.
- W2034084511 hasConceptScore W2034084511C136119220 @default.
- W2034084511 hasConceptScore W2034084511C145620117 @default.
- W2034084511 hasConceptScore W2034084511C147663694 @default.
- W2034084511 hasConceptScore W2034084511C158448853 @default.
- W2034084511 hasConceptScore W2034084511C17020691 @default.
- W2034084511 hasConceptScore W2034084511C185592680 @default.
- W2034084511 hasConceptScore W2034084511C199360897 @default.
- W2034084511 hasConceptScore W2034084511C202444582 @default.
- W2034084511 hasConceptScore W2034084511C2524010 @default.
- W2034084511 hasConceptScore W2034084511C33923547 @default.
- W2034084511 hasConceptScore W2034084511C41008148 @default.
- W2034084511 hasConceptScore W2034084511C55493867 @default.
- W2034084511 hasConceptScore W2034084511C57691317 @default.
- W2034084511 hasConceptScore W2034084511C70915906 @default.
- W2034084511 hasConceptScore W2034084511C73648015 @default.
- W2034084511 hasConceptScore W2034084511C86339819 @default.
- W2034084511 hasConceptScore W2034084511C91188154 @default.
- W2034084511 hasIssue "4" @default.
- W2034084511 hasLocation W20340845111 @default.
- W2034084511 hasOpenAccess W2034084511 @default.
- W2034084511 hasPrimaryLocation W20340845111 @default.
- W2034084511 hasRelatedWork W2258705080 @default.
- W2034084511 hasRelatedWork W2477603266 @default.
- W2034084511 hasRelatedWork W2490966737 @default.
- W2034084511 hasRelatedWork W2766563414 @default.
- W2034084511 hasRelatedWork W3022758625 @default.
- W2034084511 hasRelatedWork W3046045666 @default.
- W2034084511 hasRelatedWork W3168011518 @default.
- W2034084511 hasRelatedWork W4205193482 @default.
- W2034084511 hasRelatedWork W4243605982 @default.
- W2034084511 hasRelatedWork W4366307899 @default.
- W2034084511 hasVolume "28" @default.
- W2034084511 isParatext "false" @default.
- W2034084511 isRetracted "false" @default.
- W2034084511 magId "2034084511" @default.
- W2034084511 workType "article" @default.