Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034121290> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2034121290 endingPage "8" @default.
- W2034121290 startingPage "1" @default.
- W2034121290 abstract "Abnormal kinase activity is a frequent cause of diseases, which makes kinases a promising pharmacological target. Thus, it is critical to identify the characteristics of protein kinases regulation by studying the activation and inhibition of kinase subunits in response to varied stimuli. Bayesian network (BN) is a formalism for probabilistic reasoning that has been widely used for learning dependency models. However, for high-dimensional discrete random vectors the set of plausible models becomes large and a full comparison of all the posterior probabilities related to the competing models becomes infeasible. A solution to this problem is based on the Markov Chain Monte Carlo (MCMC) method. This paper proposes a BN-based framework to discover the dependency correlations of kinase regulation. Our approach is to apply the MCMC method to generate a sequence of samples from a probability distribution, by which to approximate the distribution. The frequent connections (edges) are identified from the obtained sampling graphical models. Our results point to a number of novel candidate regulation patterns that are interesting in biology and include inferred associations that were unknown." @default.
- W2034121290 created "2016-06-24" @default.
- W2034121290 creator A5016393244 @default.
- W2034121290 creator A5063038462 @default.
- W2034121290 date "2011-03-01" @default.
- W2034121290 modified "2023-09-27" @default.
- W2034121290 title "Mining Protein Kinases Regulation Using Graphical Models" @default.
- W2034121290 cites W1517637854 @default.
- W2034121290 cites W1541995135 @default.
- W2034121290 cites W1967251674 @default.
- W2034121290 cites W1980452149 @default.
- W2034121290 cites W1989020770 @default.
- W2034121290 cites W1995349067 @default.
- W2034121290 cites W1999432334 @default.
- W2034121290 cites W2046443205 @default.
- W2034121290 cites W2080547977 @default.
- W2034121290 cites W2087832965 @default.
- W2034121290 cites W2103057291 @default.
- W2034121290 cites W2135194391 @default.
- W2034121290 cites W2138309709 @default.
- W2034121290 cites W2139218243 @default.
- W2034121290 cites W2159626521 @default.
- W2034121290 cites W2164000337 @default.
- W2034121290 cites W2165796742 @default.
- W2034121290 cites W2170112109 @default.
- W2034121290 cites W2330192890 @default.
- W2034121290 cites W2397866408 @default.
- W2034121290 doi "https://doi.org/10.1109/tnb.2011.2109008" @default.
- W2034121290 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21349798" @default.
- W2034121290 hasPublicationYear "2011" @default.
- W2034121290 type Work @default.
- W2034121290 sameAs 2034121290 @default.
- W2034121290 citedByCount "2" @default.
- W2034121290 countsByYear W20341212902012 @default.
- W2034121290 countsByYear W20341212902021 @default.
- W2034121290 crossrefType "journal-article" @default.
- W2034121290 hasAuthorship W2034121290A5016393244 @default.
- W2034121290 hasAuthorship W2034121290A5063038462 @default.
- W2034121290 hasConcept C107673813 @default.
- W2034121290 hasConcept C111350023 @default.
- W2034121290 hasConcept C119857082 @default.
- W2034121290 hasConcept C142362112 @default.
- W2034121290 hasConcept C153349607 @default.
- W2034121290 hasConcept C154945302 @default.
- W2034121290 hasConcept C155846161 @default.
- W2034121290 hasConcept C158424031 @default.
- W2034121290 hasConcept C19768560 @default.
- W2034121290 hasConcept C33724603 @default.
- W2034121290 hasConcept C41008148 @default.
- W2034121290 hasConcept C49937458 @default.
- W2034121290 hasConcept C558565934 @default.
- W2034121290 hasConcept C57830394 @default.
- W2034121290 hasConcept C70721500 @default.
- W2034121290 hasConcept C73301696 @default.
- W2034121290 hasConcept C86803240 @default.
- W2034121290 hasConcept C98763669 @default.
- W2034121290 hasConceptScore W2034121290C107673813 @default.
- W2034121290 hasConceptScore W2034121290C111350023 @default.
- W2034121290 hasConceptScore W2034121290C119857082 @default.
- W2034121290 hasConceptScore W2034121290C142362112 @default.
- W2034121290 hasConceptScore W2034121290C153349607 @default.
- W2034121290 hasConceptScore W2034121290C154945302 @default.
- W2034121290 hasConceptScore W2034121290C155846161 @default.
- W2034121290 hasConceptScore W2034121290C158424031 @default.
- W2034121290 hasConceptScore W2034121290C19768560 @default.
- W2034121290 hasConceptScore W2034121290C33724603 @default.
- W2034121290 hasConceptScore W2034121290C41008148 @default.
- W2034121290 hasConceptScore W2034121290C49937458 @default.
- W2034121290 hasConceptScore W2034121290C558565934 @default.
- W2034121290 hasConceptScore W2034121290C57830394 @default.
- W2034121290 hasConceptScore W2034121290C70721500 @default.
- W2034121290 hasConceptScore W2034121290C73301696 @default.
- W2034121290 hasConceptScore W2034121290C86803240 @default.
- W2034121290 hasConceptScore W2034121290C98763669 @default.
- W2034121290 hasIssue "1" @default.
- W2034121290 hasLocation W20341212901 @default.
- W2034121290 hasLocation W20341212902 @default.
- W2034121290 hasOpenAccess W2034121290 @default.
- W2034121290 hasPrimaryLocation W20341212901 @default.
- W2034121290 hasRelatedWork W1999507352 @default.
- W2034121290 hasRelatedWork W2020264252 @default.
- W2034121290 hasRelatedWork W2034121290 @default.
- W2034121290 hasRelatedWork W2160733013 @default.
- W2034121290 hasRelatedWork W2365776037 @default.
- W2034121290 hasRelatedWork W2803889752 @default.
- W2034121290 hasRelatedWork W29453420 @default.
- W2034121290 hasRelatedWork W2963131997 @default.
- W2034121290 hasRelatedWork W3121470121 @default.
- W2034121290 hasRelatedWork W3187416000 @default.
- W2034121290 hasVolume "10" @default.
- W2034121290 isParatext "false" @default.
- W2034121290 isRetracted "false" @default.
- W2034121290 magId "2034121290" @default.
- W2034121290 workType "article" @default.