Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034146151> ?p ?o ?g. }
- W2034146151 abstract "Herein we describe theory and algorithms for detecting covariance structures in large, noisy data sets. Our work uses ideas from matrix completion and robust principal component analysis to detect the presence of low-rank covariance matrices, even when the data is noisy, distorted by large corruptions, and only partially observed. In fact, the ability to handle partial observations combined with ideas from randomized algorithms for matrix decomposition enables us to produce asymptotically fast algorithms. Herein we will provide numerical demonstrations of the methods and their convergence properties. While such methods have applicability to many problems, including mathematical finance, crime analysis, and other large-scale sensor fusion problems, our inspiration arises from applying these methods in the context of cyber network intrusion detection." @default.
- W2034146151 created "2016-06-24" @default.
- W2034146151 creator A5002180419 @default.
- W2034146151 creator A5027655988 @default.
- W2034146151 creator A5055993032 @default.
- W2034146151 date "2013-09-30" @default.
- W2034146151 modified "2023-09-23" @default.
- W2034146151 title "On covariance structure in noisy, big data" @default.
- W2034146151 cites W1568122762 @default.
- W2034146151 cites W1613169971 @default.
- W2034146151 cites W1663973292 @default.
- W2034146151 cites W1736339626 @default.
- W2034146151 cites W1995168330 @default.
- W2034146151 cites W2000147660 @default.
- W2034146151 cites W2004026774 @default.
- W2034146151 cites W2047071281 @default.
- W2034146151 cites W2055081158 @default.
- W2034146151 cites W2062299619 @default.
- W2034146151 cites W2103972604 @default.
- W2034146151 cites W2109357213 @default.
- W2034146151 cites W2117756735 @default.
- W2034146151 cites W2145962650 @default.
- W2034146151 cites W2164278908 @default.
- W2034146151 cites W2611328865 @default.
- W2034146151 cites W2963831709 @default.
- W2034146151 cites W3099514962 @default.
- W2034146151 cites W3107934168 @default.
- W2034146151 cites W89732088 @default.
- W2034146151 doi "https://doi.org/10.1117/12.2037882" @default.
- W2034146151 hasPublicationYear "2013" @default.
- W2034146151 type Work @default.
- W2034146151 sameAs 2034146151 @default.
- W2034146151 citedByCount "5" @default.
- W2034146151 countsByYear W20341461512015 @default.
- W2034146151 countsByYear W20341461512016 @default.
- W2034146151 countsByYear W20341461512018 @default.
- W2034146151 countsByYear W20341461512019 @default.
- W2034146151 countsByYear W20341461512020 @default.
- W2034146151 crossrefType "proceedings-article" @default.
- W2034146151 hasAuthorship W2034146151A5002180419 @default.
- W2034146151 hasAuthorship W2034146151A5027655988 @default.
- W2034146151 hasAuthorship W2034146151A5055993032 @default.
- W2034146151 hasConcept C105795698 @default.
- W2034146151 hasConcept C106487976 @default.
- W2034146151 hasConcept C11413529 @default.
- W2034146151 hasConcept C114614502 @default.
- W2034146151 hasConcept C124101348 @default.
- W2034146151 hasConcept C151730666 @default.
- W2034146151 hasConcept C154945302 @default.
- W2034146151 hasConcept C159985019 @default.
- W2034146151 hasConcept C162324750 @default.
- W2034146151 hasConcept C164226766 @default.
- W2034146151 hasConcept C178650346 @default.
- W2034146151 hasConcept C180877172 @default.
- W2034146151 hasConcept C185142706 @default.
- W2034146151 hasConcept C192562407 @default.
- W2034146151 hasConcept C27438332 @default.
- W2034146151 hasConcept C2777303404 @default.
- W2034146151 hasConcept C2777749129 @default.
- W2034146151 hasConcept C2779343474 @default.
- W2034146151 hasConcept C33923547 @default.
- W2034146151 hasConcept C33954974 @default.
- W2034146151 hasConcept C41008148 @default.
- W2034146151 hasConcept C50522688 @default.
- W2034146151 hasConcept C83042196 @default.
- W2034146151 hasConcept C86803240 @default.
- W2034146151 hasConceptScore W2034146151C105795698 @default.
- W2034146151 hasConceptScore W2034146151C106487976 @default.
- W2034146151 hasConceptScore W2034146151C11413529 @default.
- W2034146151 hasConceptScore W2034146151C114614502 @default.
- W2034146151 hasConceptScore W2034146151C124101348 @default.
- W2034146151 hasConceptScore W2034146151C151730666 @default.
- W2034146151 hasConceptScore W2034146151C154945302 @default.
- W2034146151 hasConceptScore W2034146151C159985019 @default.
- W2034146151 hasConceptScore W2034146151C162324750 @default.
- W2034146151 hasConceptScore W2034146151C164226766 @default.
- W2034146151 hasConceptScore W2034146151C178650346 @default.
- W2034146151 hasConceptScore W2034146151C180877172 @default.
- W2034146151 hasConceptScore W2034146151C185142706 @default.
- W2034146151 hasConceptScore W2034146151C192562407 @default.
- W2034146151 hasConceptScore W2034146151C27438332 @default.
- W2034146151 hasConceptScore W2034146151C2777303404 @default.
- W2034146151 hasConceptScore W2034146151C2777749129 @default.
- W2034146151 hasConceptScore W2034146151C2779343474 @default.
- W2034146151 hasConceptScore W2034146151C33923547 @default.
- W2034146151 hasConceptScore W2034146151C33954974 @default.
- W2034146151 hasConceptScore W2034146151C41008148 @default.
- W2034146151 hasConceptScore W2034146151C50522688 @default.
- W2034146151 hasConceptScore W2034146151C83042196 @default.
- W2034146151 hasConceptScore W2034146151C86803240 @default.
- W2034146151 hasLocation W20341461511 @default.
- W2034146151 hasOpenAccess W2034146151 @default.
- W2034146151 hasPrimaryLocation W20341461511 @default.
- W2034146151 hasRelatedWork W1676203161 @default.
- W2034146151 hasRelatedWork W2000329349 @default.
- W2034146151 hasRelatedWork W2003361735 @default.
- W2034146151 hasRelatedWork W2004026774 @default.
- W2034146151 hasRelatedWork W2013431023 @default.
- W2034146151 hasRelatedWork W2028274810 @default.
- W2034146151 hasRelatedWork W2103587724 @default.