Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034149459> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2034149459 abstract "For several tasks in sensor networks, such as localization, information fusion, or sensor scheduling, Bayesian estimation is of paramount importance. Due to the limited computational and memory resources of the nodes in a sensor network, evaluation of the prediction step of the Bayesian estimator has to be performed very efficiently. An exact and closed-form representation of the predicted probability density function of the system state is typically impossible to obtain, since exactly solving the prediction step for nonlinear discrete-time dynamic systems in closed form is unfeasible. Assuming additive noise, we propose an accurate approximation of the predicted density, that can be calculated efficiently by optimally approximating the transition density using a hybrid density. A hybrid density consists of two different density types: Dirac delta functions that cover the domain of the current density of the system state, and another density type, e.g. Gaussian densities, that cover the domain of the predicted density. The freely selectable, second density type of the hybrid density depends strongly on the noise affecting the nonlinear system. So, the proposed approximation framework for nonlinear prediction is not restricted to a specific noise density. It further allows an analytical evaluation of the Chapman-Kolmogorov prediction equation and can be interpreted as a deterministic sampling estimation approach. In contrast to methods using random sampling like particle filters, a dramatic reduction in the number of components and a subsequent decrease in computation time for approximating the predicted density is gained." @default.
- W2034149459 created "2016-06-24" @default.
- W2034149459 creator A5031354877 @default.
- W2034149459 creator A5055331421 @default.
- W2034149459 date "2007-01-01" @default.
- W2034149459 modified "2023-10-18" @default.
- W2034149459 title "Hybrid transition density approximation for efficient recursive prediction of nonlinear dynamic systems" @default.
- W2034149459 cites W1600022730 @default.
- W2034149459 cites W1970319972 @default.
- W2034149459 cites W1974012599 @default.
- W2034149459 cites W2008149271 @default.
- W2034149459 cites W2039728842 @default.
- W2034149459 cites W2050310632 @default.
- W2034149459 cites W2094743930 @default.
- W2034149459 cites W2099867508 @default.
- W2034149459 cites W2101885438 @default.
- W2034149459 cites W2105934661 @default.
- W2034149459 cites W2106371955 @default.
- W2034149459 cites W2109320351 @default.
- W2034149459 cites W2121075403 @default.
- W2034149459 cites W2123487311 @default.
- W2034149459 cites W2129006946 @default.
- W2034149459 cites W2135906601 @default.
- W2034149459 cites W2141162165 @default.
- W2034149459 cites W2141620354 @default.
- W2034149459 cites W2150744922 @default.
- W2034149459 cites W2160337655 @default.
- W2034149459 cites W2178829616 @default.
- W2034149459 cites W578614108 @default.
- W2034149459 cites W2183842757 @default.
- W2034149459 doi "https://doi.org/10.1145/1236360.1236398" @default.
- W2034149459 hasPublicationYear "2007" @default.
- W2034149459 type Work @default.
- W2034149459 sameAs 2034149459 @default.
- W2034149459 citedByCount "5" @default.
- W2034149459 countsByYear W20341494592014 @default.
- W2034149459 crossrefType "proceedings-article" @default.
- W2034149459 hasAuthorship W2034149459A5031354877 @default.
- W2034149459 hasAuthorship W2034149459A5055331421 @default.
- W2034149459 hasBestOaLocation W20341494592 @default.
- W2034149459 hasConcept C105795698 @default.
- W2034149459 hasConcept C11413529 @default.
- W2034149459 hasConcept C115961682 @default.
- W2034149459 hasConcept C121332964 @default.
- W2034149459 hasConcept C121864883 @default.
- W2034149459 hasConcept C126255220 @default.
- W2034149459 hasConcept C154945302 @default.
- W2034149459 hasConcept C157286648 @default.
- W2034149459 hasConcept C158622935 @default.
- W2034149459 hasConcept C185429906 @default.
- W2034149459 hasConcept C189508267 @default.
- W2034149459 hasConcept C197055811 @default.
- W2034149459 hasConcept C28826006 @default.
- W2034149459 hasConcept C33923547 @default.
- W2034149459 hasConcept C41008148 @default.
- W2034149459 hasConcept C52421305 @default.
- W2034149459 hasConcept C62520636 @default.
- W2034149459 hasConcept C71134354 @default.
- W2034149459 hasConcept C99498987 @default.
- W2034149459 hasConceptScore W2034149459C105795698 @default.
- W2034149459 hasConceptScore W2034149459C11413529 @default.
- W2034149459 hasConceptScore W2034149459C115961682 @default.
- W2034149459 hasConceptScore W2034149459C121332964 @default.
- W2034149459 hasConceptScore W2034149459C121864883 @default.
- W2034149459 hasConceptScore W2034149459C126255220 @default.
- W2034149459 hasConceptScore W2034149459C154945302 @default.
- W2034149459 hasConceptScore W2034149459C157286648 @default.
- W2034149459 hasConceptScore W2034149459C158622935 @default.
- W2034149459 hasConceptScore W2034149459C185429906 @default.
- W2034149459 hasConceptScore W2034149459C189508267 @default.
- W2034149459 hasConceptScore W2034149459C197055811 @default.
- W2034149459 hasConceptScore W2034149459C28826006 @default.
- W2034149459 hasConceptScore W2034149459C33923547 @default.
- W2034149459 hasConceptScore W2034149459C41008148 @default.
- W2034149459 hasConceptScore W2034149459C52421305 @default.
- W2034149459 hasConceptScore W2034149459C62520636 @default.
- W2034149459 hasConceptScore W2034149459C71134354 @default.
- W2034149459 hasConceptScore W2034149459C99498987 @default.
- W2034149459 hasLocation W20341494591 @default.
- W2034149459 hasLocation W20341494592 @default.
- W2034149459 hasOpenAccess W2034149459 @default.
- W2034149459 hasPrimaryLocation W20341494591 @default.
- W2034149459 hasRelatedWork W1609197849 @default.
- W2034149459 hasRelatedWork W1854121238 @default.
- W2034149459 hasRelatedWork W2071297514 @default.
- W2034149459 hasRelatedWork W2128436974 @default.
- W2034149459 hasRelatedWork W2992233008 @default.
- W2034149459 hasRelatedWork W3124566540 @default.
- W2034149459 hasRelatedWork W3185731637 @default.
- W2034149459 hasRelatedWork W603654426 @default.
- W2034149459 hasRelatedWork W2609077557 @default.
- W2034149459 hasRelatedWork W2692144030 @default.
- W2034149459 isParatext "false" @default.
- W2034149459 isRetracted "false" @default.
- W2034149459 magId "2034149459" @default.
- W2034149459 workType "article" @default.