Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034152063> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2034152063 endingPage "89" @default.
- W2034152063 startingPage "82" @default.
- W2034152063 abstract "Previously, weighted kernel regression (WKR) for solving small samples problem has been reported. In general, WKR has proven to be effective when learning from small samples as compared to artificial neural network with back-propagation (ANNBP) and some other techniques. In order to extend the capability of the technique, we introduce a new approach to improve the WKR by incorporating the prior knowledge. In practice, different forms of prior knowledge may be available and it might avoid the weakness of the training samples limitation. In this study, the incorporation of the prior knowledge will produce a set of solutions by considering the available training samples and prior knowledge in modeling. The process involved in obtaining a set of solutions can be regarded as a bi-objective optimization problem. The proposed technique is derived based on the pareto optimality concept (POC) by using multi-objective optimization technique (MOPT). We only focus the study on the challenges of formulating the two objective functions. We demonstrate the capability of the proposed technique to robot manipulator problem. It is shown that the incorporation of the prior knowledge based on POC can be implemented and relatively improved the regression performance. Some related issues of the proposed technique are also discussed." @default.
- W2034152063 created "2016-06-24" @default.
- W2034152063 creator A5030952292 @default.
- W2034152063 creator A5073749179 @default.
- W2034152063 creator A5081758518 @default.
- W2034152063 date "2012-01-01" @default.
- W2034152063 modified "2023-09-26" @default.
- W2034152063 title "Enhanced Weighted Kernel Regression with Prior Knowledge Using Robot Manipulator Problem as a Case Study" @default.
- W2034152063 cites W2001690837 @default.
- W2034152063 cites W2070155243 @default.
- W2034152063 cites W2090313502 @default.
- W2034152063 cites W2103285838 @default.
- W2034152063 cites W2126105956 @default.
- W2034152063 cites W2142197202 @default.
- W2034152063 cites W2152551290 @default.
- W2034152063 cites W2167159964 @default.
- W2034152063 cites W4250589301 @default.
- W2034152063 doi "https://doi.org/10.1016/j.proeng.2012.07.146" @default.
- W2034152063 hasPublicationYear "2012" @default.
- W2034152063 type Work @default.
- W2034152063 sameAs 2034152063 @default.
- W2034152063 citedByCount "2" @default.
- W2034152063 countsByYear W20341520632016 @default.
- W2034152063 countsByYear W20341520632021 @default.
- W2034152063 crossrefType "journal-article" @default.
- W2034152063 hasAuthorship W2034152063A5030952292 @default.
- W2034152063 hasAuthorship W2034152063A5073749179 @default.
- W2034152063 hasAuthorship W2034152063A5081758518 @default.
- W2034152063 hasBestOaLocation W20341520631 @default.
- W2034152063 hasConcept C105795698 @default.
- W2034152063 hasConcept C111919701 @default.
- W2034152063 hasConcept C114614502 @default.
- W2034152063 hasConcept C119857082 @default.
- W2034152063 hasConcept C124101348 @default.
- W2034152063 hasConcept C126255220 @default.
- W2034152063 hasConcept C127413603 @default.
- W2034152063 hasConcept C134306372 @default.
- W2034152063 hasConcept C154945302 @default.
- W2034152063 hasConcept C177148314 @default.
- W2034152063 hasConcept C177264268 @default.
- W2034152063 hasConcept C199360897 @default.
- W2034152063 hasConcept C33923547 @default.
- W2034152063 hasConcept C41008148 @default.
- W2034152063 hasConcept C50644808 @default.
- W2034152063 hasConcept C74193536 @default.
- W2034152063 hasConcept C83546350 @default.
- W2034152063 hasConcept C98045186 @default.
- W2034152063 hasConceptScore W2034152063C105795698 @default.
- W2034152063 hasConceptScore W2034152063C111919701 @default.
- W2034152063 hasConceptScore W2034152063C114614502 @default.
- W2034152063 hasConceptScore W2034152063C119857082 @default.
- W2034152063 hasConceptScore W2034152063C124101348 @default.
- W2034152063 hasConceptScore W2034152063C126255220 @default.
- W2034152063 hasConceptScore W2034152063C127413603 @default.
- W2034152063 hasConceptScore W2034152063C134306372 @default.
- W2034152063 hasConceptScore W2034152063C154945302 @default.
- W2034152063 hasConceptScore W2034152063C177148314 @default.
- W2034152063 hasConceptScore W2034152063C177264268 @default.
- W2034152063 hasConceptScore W2034152063C199360897 @default.
- W2034152063 hasConceptScore W2034152063C33923547 @default.
- W2034152063 hasConceptScore W2034152063C41008148 @default.
- W2034152063 hasConceptScore W2034152063C50644808 @default.
- W2034152063 hasConceptScore W2034152063C74193536 @default.
- W2034152063 hasConceptScore W2034152063C83546350 @default.
- W2034152063 hasConceptScore W2034152063C98045186 @default.
- W2034152063 hasLocation W20341520631 @default.
- W2034152063 hasOpenAccess W2034152063 @default.
- W2034152063 hasPrimaryLocation W20341520631 @default.
- W2034152063 hasRelatedWork W2074909897 @default.
- W2034152063 hasRelatedWork W2293980041 @default.
- W2034152063 hasRelatedWork W2363419996 @default.
- W2034152063 hasRelatedWork W2898882859 @default.
- W2034152063 hasRelatedWork W2899084033 @default.
- W2034152063 hasRelatedWork W2961085424 @default.
- W2034152063 hasRelatedWork W3090337104 @default.
- W2034152063 hasRelatedWork W3201070945 @default.
- W2034152063 hasRelatedWork W4306674287 @default.
- W2034152063 hasRelatedWork W1629725936 @default.
- W2034152063 hasVolume "41" @default.
- W2034152063 isParatext "false" @default.
- W2034152063 isRetracted "false" @default.
- W2034152063 magId "2034152063" @default.
- W2034152063 workType "article" @default.