Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034154158> ?p ?o ?g. }
- W2034154158 endingPage "198" @default.
- W2034154158 startingPage "186" @default.
- W2034154158 abstract "The mechanism for the widespread Mesozoic magmatism in South China has been ascribed to either the paleo-Pacific plate subduction or intra-continental lithospheric extension. Mantle xenoliths entrained in the Jurassic Ningyuan alkaline basalts from southern Hunan Province, including twelve lherzolites and one harzburgite, have been studied to constrain the composition and age of the Mesozoic sub-continental lithospheric mantle. The lherzolites contain 2.06–4.09 wt.% Al2O3 and 2.03–3.91 wt.% CaO, which are higher than the abundances of these species in the harbzurgite (1.72 wt.% and 1.17 wt.%, respectively). The Cr# of spinel varies from 0.07 to 0.24. Orthopyroxene contains 3.61–4.96 wt.% Al2O3 and 0.51–0.8 wt.% CaO, whereas clinopyroxene contains 4.78–7.32 wt.% Al2O3 and 1.04–2.01 wt.% Na2O. Both whole rock and mineral compositions suggest that the Ningyuan mantle xenoliths have been subjected to low degrees of partial melting. Modeling of Y and Yb contents of clinopyroxene indicates that the lherzolites have been subjected to 3–5% degrees of partial melting, while the harzburgite has experienced about 12% melting. Clinopyroxene in most Ningyuan mantle xenoliths shows variable depletion in incompatible elements, suggesting that they have been weakly enriched after melting. Clinopyroxene in one sample (TYS01-3) displays strong enrichment in incompatible elements, reflecting the local occurrence of melt metasomatism. Equilibrium temperatures estimated by two-pyroxene geothermometry vary from 994 to 1081 °C, indicating that the Mesozoic mantle lithosphere has a hot geotherm. All lherzolites display consistent highly siderophile element (HSE) patterns and have suprachondritic Ru/Ir and Pd/Ir ratios. The harzburgite shows remarkable depletion in Pt, Pd and Re. The lherzolites have 187Os/188Os ratios of 0.12116–0.12929, which are higher than that of the harzburgite (0.11681). A correlation between 187Os/188Os and Al2O3 exists among the Ningyuan mantle xenoliths, which if interpreted as an isochron analog yields a model age of ~ 2.2 Ga. This age is older than the Re depletion age (TRD) of the harzburgite (~ 1.8 Ga), which represents a minimum age of melt depletion. The old ages either support the existence of ancient lithosphere relics beneath the Ningyuan region or reflect the accretion of ancient mantle materials from the asthenosphere during the Mesozoic. Although the tectonic implication of the old ages is ambiguous, compositions of the Ningyuan mantle xenoliths suggest that ancient mantle lithosphere beneath South China has been thinned and replaced by hotter, younger mantle during the Mesozoic, which has led to extensive lithospheric extension and abundant magmatism." @default.
- W2034154158 created "2016-06-24" @default.
- W2034154158 creator A5022675204 @default.
- W2034154158 creator A5023735787 @default.
- W2034154158 creator A5041038245 @default.
- W2034154158 creator A5089640396 @default.
- W2034154158 date "2012-01-01" @default.
- W2034154158 modified "2023-10-18" @default.
- W2034154158 title "Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: Geochemical and Re–Os isotopic results from Ningyuan mantle xenoliths" @default.
- W2034154158 cites W1525258218 @default.
- W2034154158 cites W1535363067 @default.
- W2034154158 cites W1964175282 @default.
- W2034154158 cites W1964707475 @default.
- W2034154158 cites W1966685022 @default.
- W2034154158 cites W1969859799 @default.
- W2034154158 cites W1970458022 @default.
- W2034154158 cites W1970672357 @default.
- W2034154158 cites W1972298310 @default.
- W2034154158 cites W1972871289 @default.
- W2034154158 cites W1973191271 @default.
- W2034154158 cites W1974459954 @default.
- W2034154158 cites W1975777679 @default.
- W2034154158 cites W1977457396 @default.
- W2034154158 cites W1981869193 @default.
- W2034154158 cites W1984787349 @default.
- W2034154158 cites W1988694196 @default.
- W2034154158 cites W1990740187 @default.
- W2034154158 cites W1995269464 @default.
- W2034154158 cites W1996035531 @default.
- W2034154158 cites W1996038144 @default.
- W2034154158 cites W2000219006 @default.
- W2034154158 cites W2003954276 @default.
- W2034154158 cites W2004236451 @default.
- W2034154158 cites W2006115440 @default.
- W2034154158 cites W2006184507 @default.
- W2034154158 cites W2008106911 @default.
- W2034154158 cites W2008489622 @default.
- W2034154158 cites W2010897022 @default.
- W2034154158 cites W2018518478 @default.
- W2034154158 cites W2019339918 @default.
- W2034154158 cites W2023756316 @default.
- W2034154158 cites W2024436619 @default.
- W2034154158 cites W2026196100 @default.
- W2034154158 cites W2029184354 @default.
- W2034154158 cites W2032701794 @default.
- W2034154158 cites W2032840455 @default.
- W2034154158 cites W2037647612 @default.
- W2034154158 cites W2038083256 @default.
- W2034154158 cites W2039293023 @default.
- W2034154158 cites W2040676970 @default.
- W2034154158 cites W2043692481 @default.
- W2034154158 cites W2046141409 @default.
- W2034154158 cites W2054486238 @default.
- W2034154158 cites W2058314706 @default.
- W2034154158 cites W2060472760 @default.
- W2034154158 cites W2060786193 @default.
- W2034154158 cites W2060811640 @default.
- W2034154158 cites W2064306021 @default.
- W2034154158 cites W2067655610 @default.
- W2034154158 cites W2068639334 @default.
- W2034154158 cites W2073103313 @default.
- W2034154158 cites W2074712248 @default.
- W2034154158 cites W2079488564 @default.
- W2034154158 cites W2083549437 @default.
- W2034154158 cites W2083591846 @default.
- W2034154158 cites W2084866171 @default.
- W2034154158 cites W2085328945 @default.
- W2034154158 cites W2094907600 @default.
- W2034154158 cites W2102405759 @default.
- W2034154158 cites W2108727836 @default.
- W2034154158 cites W2111116132 @default.
- W2034154158 cites W2111696176 @default.
- W2034154158 cites W2113810005 @default.
- W2034154158 cites W2113899144 @default.
- W2034154158 cites W2118503833 @default.
- W2034154158 cites W2119098685 @default.
- W2034154158 cites W2123985829 @default.
- W2034154158 cites W2126494122 @default.
- W2034154158 cites W2151010548 @default.
- W2034154158 cites W2151361163 @default.
- W2034154158 cites W2155838580 @default.
- W2034154158 cites W2168661179 @default.
- W2034154158 cites W2372889591 @default.
- W2034154158 doi "https://doi.org/10.1016/j.chemgeo.2011.10.006" @default.
- W2034154158 hasPublicationYear "2012" @default.
- W2034154158 type Work @default.
- W2034154158 sameAs 2034154158 @default.
- W2034154158 citedByCount "83" @default.
- W2034154158 countsByYear W20341541582012 @default.
- W2034154158 countsByYear W20341541582013 @default.
- W2034154158 countsByYear W20341541582014 @default.
- W2034154158 countsByYear W20341541582015 @default.
- W2034154158 countsByYear W20341541582016 @default.
- W2034154158 countsByYear W20341541582017 @default.
- W2034154158 countsByYear W20341541582018 @default.
- W2034154158 countsByYear W20341541582019 @default.
- W2034154158 countsByYear W20341541582020 @default.
- W2034154158 countsByYear W20341541582021 @default.