Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034171455> ?p ?o ?g. }
- W2034171455 endingPage "054" @default.
- W2034171455 startingPage "054" @default.
- W2034171455 abstract "We consider equivariant dimensional reduction of Yang-Mills theory on Kähler manifolds of the form M × P1 × P1. This induces a rank two quiver gauge theory on M which can be formulated as a Yang-Mills theory of graded connections on M. The reduction of the Yang-Mills equations on M × P1 × P1 induces quiver gauge theory equations on M and quiver vortex equations in the BPS sector. When M is the noncommutative space θ2n both BPS and non-BPS solutions are obtained, and interpreted as states of D-branes. Using the graded connection formalism, we assign D0-brane charges in equivariant K-theory to the quiver vortex configurations. Some categorical properties of these quiver brane configurations are also described in terms of the corresponding quiver representations." @default.
- W2034171455 created "2016-06-24" @default.
- W2034171455 creator A5002416716 @default.
- W2034171455 creator A5006896283 @default.
- W2034171455 creator A5013044779 @default.
- W2034171455 date "2006-09-22" @default.
- W2034171455 modified "2023-10-17" @default.
- W2034171455 title "Rank two quiver gauge theory, graded connections and noncommutative vortices" @default.
- W2034171455 cites W1521366487 @default.
- W2034171455 cites W1542994612 @default.
- W2034171455 cites W1572341022 @default.
- W2034171455 cites W1599194318 @default.
- W2034171455 cites W1848998642 @default.
- W2034171455 cites W1861912176 @default.
- W2034171455 cites W1888331327 @default.
- W2034171455 cites W1968933298 @default.
- W2034171455 cites W1971288777 @default.
- W2034171455 cites W1973865378 @default.
- W2034171455 cites W1974665356 @default.
- W2034171455 cites W1979043178 @default.
- W2034171455 cites W1988264749 @default.
- W2034171455 cites W1989164874 @default.
- W2034171455 cites W1993340444 @default.
- W2034171455 cites W1997150457 @default.
- W2034171455 cites W2019955988 @default.
- W2034171455 cites W2027341041 @default.
- W2034171455 cites W2034258010 @default.
- W2034171455 cites W2034958095 @default.
- W2034171455 cites W2037832049 @default.
- W2034171455 cites W2042762922 @default.
- W2034171455 cites W2044099903 @default.
- W2034171455 cites W2046295013 @default.
- W2034171455 cites W2046850712 @default.
- W2034171455 cites W2049563602 @default.
- W2034171455 cites W2050342609 @default.
- W2034171455 cites W2051129024 @default.
- W2034171455 cites W2053092121 @default.
- W2034171455 cites W2055074406 @default.
- W2034171455 cites W2066226858 @default.
- W2034171455 cites W2067235262 @default.
- W2034171455 cites W2081208693 @default.
- W2034171455 cites W2082496369 @default.
- W2034171455 cites W2083504023 @default.
- W2034171455 cites W2086014210 @default.
- W2034171455 cites W2089420710 @default.
- W2034171455 cites W2093890854 @default.
- W2034171455 cites W2108681310 @default.
- W2034171455 cites W2116285680 @default.
- W2034171455 cites W2134155718 @default.
- W2034171455 cites W2134916929 @default.
- W2034171455 cites W2147640427 @default.
- W2034171455 cites W2159962659 @default.
- W2034171455 cites W2160658670 @default.
- W2034171455 cites W2161879643 @default.
- W2034171455 cites W2167898953 @default.
- W2034171455 cites W2963702242 @default.
- W2034171455 cites W3037040474 @default.
- W2034171455 cites W3099127645 @default.
- W2034171455 cites W3099687559 @default.
- W2034171455 cites W3099910728 @default.
- W2034171455 cites W3100030466 @default.
- W2034171455 cites W3100393860 @default.
- W2034171455 cites W3100982255 @default.
- W2034171455 cites W3101994243 @default.
- W2034171455 cites W3102038582 @default.
- W2034171455 cites W3102613338 @default.
- W2034171455 cites W3103057176 @default.
- W2034171455 cites W3103467293 @default.
- W2034171455 cites W3104039068 @default.
- W2034171455 cites W3104165436 @default.
- W2034171455 cites W3104339982 @default.
- W2034171455 cites W3105013342 @default.
- W2034171455 cites W3105492924 @default.
- W2034171455 cites W3105940768 @default.
- W2034171455 cites W3105969666 @default.
- W2034171455 cites W3119574807 @default.
- W2034171455 cites W3122572318 @default.
- W2034171455 cites W3125058265 @default.
- W2034171455 cites W4210592614 @default.
- W2034171455 doi "https://doi.org/10.1088/1126-6708/2006/09/054" @default.
- W2034171455 hasPublicationYear "2006" @default.
- W2034171455 type Work @default.
- W2034171455 sameAs 2034171455 @default.
- W2034171455 citedByCount "35" @default.
- W2034171455 countsByYear W20341714552012 @default.
- W2034171455 countsByYear W20341714552014 @default.
- W2034171455 countsByYear W20341714552015 @default.
- W2034171455 countsByYear W20341714552016 @default.
- W2034171455 countsByYear W20341714552017 @default.
- W2034171455 countsByYear W20341714552019 @default.
- W2034171455 countsByYear W20341714552023 @default.
- W2034171455 crossrefType "journal-article" @default.
- W2034171455 hasAuthorship W2034171455A5002416716 @default.
- W2034171455 hasAuthorship W2034171455A5006896283 @default.
- W2034171455 hasAuthorship W2034171455A5013044779 @default.
- W2034171455 hasBestOaLocation W20341714551 @default.
- W2034171455 hasConcept C121332964 @default.
- W2034171455 hasConcept C168310172 @default.