Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034175227> ?p ?o ?g. }
- W2034175227 endingPage "26738" @default.
- W2034175227 startingPage "26729" @default.
- W2034175227 abstract "The 3-fucosyl-N-acetyllactosamine (Lewis x, CD15, SSEA-1) carbohydrate epitope is widely distributed in many tissues and is developmentally expressed in some rodent and human tissues,i.e. brain and lung, and mouse early embryo. In such tissues, the Lewis x epitope is considered to be involved in cell-cell interactions. We isolated a novel mouse α1,3-fucosyltransferase gene, named mFuc-TIX, from an adult mouse brain cDNA library using the expression cloning method. On flow cytometric analysis, Namalwa cells transfected stably with the mFuc-TIX gene showed a marked increase in Lewis x epitopes but not sialyl Lewis x epitopes. As seen experiments involving oligosaccharides as acceptor substrates, mFuc-TIX transfers a fucose to lacto-N-neotetraose but not to either α2,3-sialyl lacto-N-neotetraose or lacto-N-tetraose. The substrate specificity of mFuc-TIX was similar to that of mouse myeloid-type α1,3-fucosyltransferase (mFuc-TIV). The deduced amino acid sequence of mFuc-TIX, consisting of 359 residues, indicated a type II membrane protein and shows low degrees of homology to the previously cloned α1,3-fucosyltransferases, i.e. mFuc-TIV (48.4%), mouse Fuc-TVII (39.1%), and human Fuc-TIII (43.0%), at the amino acid sequence level. A phylogenetic tree of the α1,3-fucosyltransferases constructed by the neighbor-joining method showed that mFuc-TIX is quite distant from the other α1,3-fucosyltransferases. Thus, mFuc-TIX does not belong to any subfamilies of known α1,3Fuc-Ts. The mFuc-TIX transcript was mainly detected in brain and kidney with the Northern blotting and competitive reverse transcription-polymerase chain reaction methods, whereas the mFuc-TIV transcript was not detected in brain with these methods. On in situ hybridization, the mFuc-TIX transcript was detected in neuronal cells but not in the glial cells including astrocytes. These results strongly indicated that mFuc-TIX participates in the Lewis x synthesis in neurons of the brain and may be developmentally regulated. The 3-fucosyl-N-acetyllactosamine (Lewis x, CD15, SSEA-1) carbohydrate epitope is widely distributed in many tissues and is developmentally expressed in some rodent and human tissues,i.e. brain and lung, and mouse early embryo. In such tissues, the Lewis x epitope is considered to be involved in cell-cell interactions. We isolated a novel mouse α1,3-fucosyltransferase gene, named mFuc-TIX, from an adult mouse brain cDNA library using the expression cloning method. On flow cytometric analysis, Namalwa cells transfected stably with the mFuc-TIX gene showed a marked increase in Lewis x epitopes but not sialyl Lewis x epitopes. As seen experiments involving oligosaccharides as acceptor substrates, mFuc-TIX transfers a fucose to lacto-N-neotetraose but not to either α2,3-sialyl lacto-N-neotetraose or lacto-N-tetraose. The substrate specificity of mFuc-TIX was similar to that of mouse myeloid-type α1,3-fucosyltransferase (mFuc-TIV). The deduced amino acid sequence of mFuc-TIX, consisting of 359 residues, indicated a type II membrane protein and shows low degrees of homology to the previously cloned α1,3-fucosyltransferases, i.e. mFuc-TIV (48.4%), mouse Fuc-TVII (39.1%), and human Fuc-TIII (43.0%), at the amino acid sequence level. A phylogenetic tree of the α1,3-fucosyltransferases constructed by the neighbor-joining method showed that mFuc-TIX is quite distant from the other α1,3-fucosyltransferases. Thus, mFuc-TIX does not belong to any subfamilies of known α1,3Fuc-Ts. The mFuc-TIX transcript was mainly detected in brain and kidney with the Northern blotting and competitive reverse transcription-polymerase chain reaction methods, whereas the mFuc-TIV transcript was not detected in brain with these methods. On in situ hybridization, the mFuc-TIX transcript was detected in neuronal cells but not in the glial cells including astrocytes. These results strongly indicated that mFuc-TIX participates in the Lewis x synthesis in neurons of the brain and may be developmentally regulated. 3Fuc-T, α1,3-fucosyltransferase murine α1,3-fucosyltransferase IX murine α1,3-fucosyltransferase IV Lewis x sialyl Lewis x fucose galactose reverse transcription-polymerase chain reaction kilobase(s) monoclonal antibody open reading frame 3-(N- morpholino)propanesulfonic acid pyridylaminated lacto-N-tetraose lacto-N-neotetraose central nervous system stage-specific embryonal antigen-1. α1,3-Fucosyltransferase (α1,3Fuc-T)1 transfers a fucose (Fuc) from guanosine diphosphate-fucose (GDP-Fuc) toN-acetylglucosamine (GlcNAc) of the type 2 chain, Galβ1,4GlcNAc-R, with an α1,3-linkage. The genes encoding α1,3Fuc-Ts form a family. Five human (1Kukowska-Latallo J.F. Larsen R.D. Nair R.P. Lowe J.B. Genes Dev. 1990; 4: 1288-1303Crossref PubMed Scopus (473) Google Scholar, 2Lowe J.B. Kukowska-Latallo J.F. Nair R.P. Larsen R.D. Marks R.M. Macher B.A. Kelly R.J. Ernst L.K. J. Biol. Chem. 1991; 266: 17467-17477Abstract Full Text PDF PubMed Google Scholar, 3Goelz S.E. Hession C. Goff D. Griffiths B. Tizard R. Newman B. Chi-Rosso G. Lobb R. Cell. 1990; 63: 1349-1356Abstract Full Text PDF PubMed Scopus (289) Google Scholar, 4Weston B.W. Nair R.P. Larsen R.D. Lowe J.B. J. Biol. Chem. 1992; 267: 4152-4160Abstract Full Text PDF PubMed Google Scholar, 5Weston B.W. Smith P.L. Kelly R.J. Lowe J.B. J. Biol. Chem. 1992; 267: 24575-24584Abstract Full Text PDF PubMed Google Scholar, 6Nishihara S. Nakazato M. Kudo T. Kimura H. Ando T. Narimatsu H. Biochem. Biophys. Res. Commun. 1993; 190: 42-46Crossref PubMed Scopus (55) Google Scholar, 7Sasaki K. Kurata K. Funayama K. Nagata M. Watanabe E. Ohta S. Hanai N. Nishi T. J. Biol. Chem. 1994; 269: 14730-14737Abstract Full Text PDF PubMed Google Scholar, 8Natsuka S. Gersten K.M. Zenita K. Kannagi R. Lowe J.B. J. Biol. Chem. 1994; 269: 16789-16794Abstract Full Text PDF PubMed Google Scholar), one bovine (9Oulmouden A. Wierinckx A. Petit J.-M. Costache M. Palcic M.M. Mollicone R. Oriol R. Julien R. J. Biol. Chem. 1997; 272: 8764-8773Abstract Full Text Full Text PDF PubMed Scopus (69) Google Scholar), two mouse (10Ozawa M. Muramatsu T. J. Biochem. (Tokyo). 1996; 119: 302-308Crossref PubMed Scopus (21) Google Scholar, 11Gersten K.M. Natsuka S. Trinchera M. Petryniak B. Kelly R.J. Hiraiwa N. Jenkins N.A. Gilbert D.J. Copeland N.G. Lowe J.B. J. Biol. Chem. 1995; 270: 25047-25056Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar, 12Maly P. Thall A.D. Petryniak B. Rogers C.E. Smith P.L. Marks R.M. Kelly R.J. Gersten K.M. Cheng G. Saunders T.L. Camper S.A. Camphausen R.T. Sullivan F.X. Isogai Y. Hindsgaul O. von Andrian U.H. Lowe J.B. Cell. 1996; 86: 643-653Abstract Full Text Full Text PDF PubMed Scopus (669) Google Scholar), one rat (13Sajdel-Sulkowska E.M. Smith F. Wiederschain G. McCluer R.H. Glycoconj. J. 1997; 14: 249-258Crossref PubMed Scopus (32) Google Scholar), and one chicken (14Lee K.P. Carlson L.M. Woodcock J.B. Ramachandra N. Schultz T.L. Davis T.A. Lowe J.B. Thompson C.B. Larsen R.D. J. Biol. Chem. 1996; 271: 32960-32967Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar)α1,3Fuc-T gene have been cloned to date. Recently, twoα1,3Fuc-T genes of Helicobacter pylori were cloned (15Ge Z. Chan N.W.C. Palcic M.M. Taylor D.E. J. Biol. Chem. 1997; 272: 21357-21363Abstract Full Text Full Text PDF PubMed Scopus (109) Google Scholar, 16Martin S.L. Edbrooke M.R. Hodgman T.C. van den Eijnden D.H. Bird M.I. J. Biol. Chem. 1997; 272: 21349-21356Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar). The enzymatic characteristics of all these α1,3Fuc-Ts from various species have been examined using recombinant enzymes directed by the genes. All five human α1,3Fuc-Ts,i.e. hFuc-TIII (hFUT3; Lewis enzyme), hFuc-TIV (hFUT4; myeloid-type α1,3Fuc-T), hFuc-TV (hFUT5), hFuc-TVI (hFUT6; plasma-type α1,3Fuc-T), and hFuc-TVII (hFUT7), can synthesize the sialyl Lewis x (sLex), sialic acid α2,3Galβ1,4(Fucα1,3)GlcNAcβ-R, epitope, and four of them,i.e. hFuc-TIII, -TIV, -TV, and -TVI, can synthesize the Lewis x (Lex), Galβ1,4(Fucα1,3)GlcNAcβ-R, epitope (1Kukowska-Latallo J.F. Larsen R.D. Nair R.P. Lowe J.B. Genes Dev. 1990; 4: 1288-1303Crossref PubMed Scopus (473) Google Scholar, 2Lowe J.B. Kukowska-Latallo J.F. Nair R.P. Larsen R.D. Marks R.M. Macher B.A. Kelly R.J. Ernst L.K. J. Biol. Chem. 1991; 266: 17467-17477Abstract Full Text PDF PubMed Google Scholar, 3Goelz S.E. Hession C. Goff D. Griffiths B. Tizard R. Newman B. Chi-Rosso G. Lobb R. Cell. 1990; 63: 1349-1356Abstract Full Text PDF PubMed Scopus (289) Google Scholar, 4Weston B.W. Nair R.P. Larsen R.D. Lowe J.B. J. Biol. Chem. 1992; 267: 4152-4160Abstract Full Text PDF PubMed Google Scholar, 5Weston B.W. Smith P.L. Kelly R.J. Lowe J.B. J. Biol. Chem. 1992; 267: 24575-24584Abstract Full Text PDF PubMed Google Scholar, 7Sasaki K. Kurata K. Funayama K. Nagata M. Watanabe E. Ohta S. Hanai N. Nishi T. J. Biol. Chem. 1994; 269: 14730-14737Abstract Full Text PDF PubMed Google Scholar, 8Natsuka S. Gersten K.M. Zenita K. Kannagi R. Lowe J.B. J. Biol. Chem. 1994; 269: 16789-16794Abstract Full Text PDF PubMed Google Scholar, 17de Vries T. Srnka C.A. Palcic M.M. Swiedler S.J. van den Eijnden D.H. Macher B.A. J. Biol. Chem. 1995; 270: 8712-8722Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar, 18Kimura H. Shinya N. Nishihara S. Kaneko M. Irimura T. Narimatsu H. Biochem. Biophys. Res. Commun. 1997; 237: 131-137Crossref PubMed Scopus (39) Google Scholar). Only hFuc-TIII can transfer Fuc to the GlcNAc residue of the type 1 chain, Galβ1,3GlcNAc-R, resulting in the synthesis of type 1 chain Lewis antigens such as Lewis a (Lea), Lewis b (Leb), and sialyl Lewis a (sLea) (19Narimatsu H. Iwasaki H. Nishihara S. Kimura H. Kudo T. Yamauchi Y. Hirohashi S. Cancer Res. 1996; 56: 330-338PubMed Google Scholar, 20Ørntoft T.F. Vestergaard E.M. Holmes E. Jakobsen J.S. Grunnet N. Mortensen M. Johnson P. Bross P. Gregersen N. Skorstengaard K. Jensen U.B. Bolund L. Wolf H. J. Biol. Chem. 1996; 271: 32260-32268Abstract Full Text Full Text PDF PubMed Scopus (94) Google Scholar, 21Narimatsu H. Iwasaki H. Nakayama F. Ikehara Y. Kudo T. Nishihara S. Sugano K. Okura H. Hirohashi S. Cancer Res. 1998; 58: 512-518PubMed Google Scholar). The chromosomal localization of the five human α1,3Fuc-Tgenes has been determined, i.e. the genes for hFuc-TIII, -TV, and -TVI, form a gene cluster in close proximity to 19p13.3 and share highly homologous sequences (6Nishihara S. Nakazato M. Kudo T. Kimura H. Ando T. Narimatsu H. Biochem. Biophys. Res. Commun. 1993; 190: 42-46Crossref PubMed Scopus (55) Google Scholar, 22McCurley R.S. Recinos A.R. Olsen A.S. Gingrich J.C. Szczepaniak D. Cameron H.S. Krauss R. Weston B.W. Genomics. 1995; 26: 142-146Crossref PubMed Scopus (48) Google Scholar, 23Reguigne-Arnould I. Couillin P. Mollicone R. Faure S. Fletcher A. Kelly R.J. Lowe J.B. Oriol R. Cytogenet. Cell Genet. 1995; 71: 158-162Crossref PubMed Scopus (70) Google Scholar), and those for hFuc-TIV and -TVII are located at 11q21 and 9q34.3, respectively (7Sasaki K. Kurata K. Funayama K. Nagata M. Watanabe E. Ohta S. Hanai N. Nishi T. J. Biol. Chem. 1994; 269: 14730-14737Abstract Full Text PDF PubMed Google Scholar, 24Reguigne I. James M.R. Richard C.W. Mollicone R. Seawright A. Lowe J.B. Oriol R. Couillin P. Cytogenet. Cell Genet. 1994; 66: 104-106Crossref PubMed Scopus (27) Google Scholar). A bovine homologue, named the futb gene, corresponding to thehFuc-TIII, -TV, or -TVI gene has been cloned (9Oulmouden A. Wierinckx A. Petit J.-M. Costache M. Palcic M.M. Mollicone R. Oriol R. Julien R. J. Biol. Chem. 1997; 272: 8764-8773Abstract Full Text Full Text PDF PubMed Scopus (69) Google Scholar). The futb gene, a single copy gene, is suggested to be an orthologous homologue of an ancestral gene, from which the present hFuc-TV-hFuc-TIII-hFuc-TVI gene cluster evolved. The two mouse genes, the mFuc-TIV and mFuc-TVIIgenes, homologues of the hFuc-TIV and -TVIIgenes, respectively, and the rat homologue, the rFuc-TIVgene, corresponding to the hFuc-TIV gene, have been cloned, and their substrate specificities were determined to be similar to those of the human homologues (10Ozawa M. Muramatsu T. J. Biochem. (Tokyo). 1996; 119: 302-308Crossref PubMed Scopus (21) Google Scholar, 11Gersten K.M. Natsuka S. Trinchera M. Petryniak B. Kelly R.J. Hiraiwa N. Jenkins N.A. Gilbert D.J. Copeland N.G. Lowe J.B. J. Biol. Chem. 1995; 270: 25047-25056Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar, 12Maly P. Thall A.D. Petryniak B. Rogers C.E. Smith P.L. Marks R.M. Kelly R.J. Gersten K.M. Cheng G. Saunders T.L. Camper S.A. Camphausen R.T. Sullivan F.X. Isogai Y. Hindsgaul O. von Andrian U.H. Lowe J.B. Cell. 1996; 86: 643-653Abstract Full Text Full Text PDF PubMed Scopus (669) Google Scholar, 13Sajdel-Sulkowska E.M. Smith F. Wiederschain G. McCluer R.H. Glycoconj. J. 1997; 14: 249-258Crossref PubMed Scopus (32) Google Scholar, 14Lee K.P. Carlson L.M. Woodcock J.B. Ramachandra N. Schultz T.L. Davis T.A. Lowe J.B. Thompson C.B. Larsen R.D. J. Biol. Chem. 1996; 271: 32960-32967Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar). The mouse orthologous homologue corresponding to the futb gene, the ancestral gene for thehFuc-TV-hFuc-TIII-hFuc-TVI gene cluster, seems to be a pseudogene (11Gersten K.M. Natsuka S. Trinchera M. Petryniak B. Kelly R.J. Hiraiwa N. Jenkins N.A. Gilbert D.J. Copeland N.G. Lowe J.B. J. Biol. Chem. 1995; 270: 25047-25056Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar, 25Costache M. Apoil P.-A. Cailleau A. Elmgren A. Larson G. Henry S. Blancher A. Iordachescu D. Oriol R. Mollicone R. J. Biol. Chem. 1997; 272: 29721-29728Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar). Immunohistochemical and biochemical studies on man and rodents revealed the widespread distribution of Lex epitopes in many tissues, such as epithelial cells of intestinal tissues (26Hakomori S. Nudelman E. Levery S.B. Kannagi R. J. Biol. Chem. 1984; 259: 4672-4680Abstract Full Text PDF PubMed Google Scholar, 27Itzkowitz S.H. Yuan M. Fukushi Y. Palekar A. Phelps P.C. Shamsuddin A.M. Trump B.F. Hakomori S. Kim Y.S. Cancer Res. 1986; 46: 2627-2632PubMed Google Scholar, 28Hakomori S.-I. Histochem. J. 1992; 24: 771-776Crossref PubMed Scopus (107) Google Scholar), myeloid cells (29Oriol R. Le Pendu J. Mollicone R. Vox Sang. 1986; 51: 161-171Crossref PubMed Scopus (324) Google Scholar, 30Tetteroo P. van Kessel A.G. Histochem. J. 1992; 24: 777-782Crossref PubMed Scopus (9) Google Scholar, 31Robinson N.E. de Vries T. Davis R.E. Stults C.L.M. Watson S.R. van den Eijnden D.H. Macher B.A. Glycobiology. 1994; 4: 317-326Crossref PubMed Scopus (19) Google Scholar), and certain neurons and glial cells in the central nervous system (CNS) (32Bartsch D. Mai J.K. Cell Tissue Res. 1991; 263: 353-366Crossref PubMed Scopus (38) Google Scholar, 33Marani E. Mai J.K. Histochem. J. 1992; 24: 852-868Crossref PubMed Scopus (39) Google Scholar, 34Oudega M. Marani E. Thomeer R.T.W.M. Histochem. J. 1992; 24: 869-877Crossref PubMed Scopus (17) Google Scholar, 35Streit A. Yuen C.-T. Loveless R.W. Lawson A.M. Finne J. Schmitz B. Feizi T. Stern C.D. J. Neurochem. 1996; 66: 834-844Crossref PubMed Scopus (78) Google Scholar, 36Ashwell K.W.S. Mai J.K. Cell Tissue Res. 1997; 289: 17-23Crossref PubMed Scopus (24) Google Scholar). In addition, the developmentally regulated Lex expression has been well investigated immunohistochemically in some tissues, i.e. mouse early embryos (37Solter D. Knowles B.B. Proc. Natl. Acad. Sci. U. S. A. 1978; 75: 5565-5569Crossref PubMed Scopus (1133) Google Scholar, 38Gooi H.C. Feiji T. Kapadia A. Knowles B.B. Solter D. Evans M.J. Nature. 1981; 292: 156-158Crossref PubMed Scopus (494) Google Scholar, 39Muramatsu H. Muramatsu T. FEBS Lett. 1983; 163: 181-184Crossref PubMed Scopus (28) Google Scholar, 40Pennington J.E. Rastan S. Roelcke D. Feiji T. J. Embryol. Exp. Morphol. 1985; 90: 335-361PubMed Google Scholar), human lung (41Miyake M. Zenita K. Tanaka O. Okada Y. Kannagi R. Cancer Res. 1988; 48: 7150-7158PubMed Google Scholar), and human and rodent CNS (36Ashwell K.W.S. Mai J.K. Cell Tissue Res. 1997; 289: 17-23Crossref PubMed Scopus (24) Google Scholar, 42Fox N. Damjanov I. Martinez-Hernandez A. Knowles B.B. Solter D. Dev. Biol. 1981; 83: 391-398Crossref PubMed Scopus (248) Google Scholar,43Mai J.K. Schönlau C.H. Histochem. J. 1992; 24: 878-889Crossref PubMed Scopus (27) Google Scholar). Stage-specific embryonal antigen-1 (SSEA-1), having the Lex epitope at its carbohydrate chain terminus, is highly expressed in the morulae of mouse embryos and decreases rapidly after compaction. The Lex epitope on SSEA-1 is considered to play a role as a cell-cell interaction molecule during compaction. The developmentally regulated expression of the Lex(CD15-reactive) epitope in the CNS has also attracted much attention since the Lex epitope may be involved in the neurodevelopmental process. However, little is known as to which α1,3Fuc-T is responsible for the Lex synthesis in such native tissues. The α1,3Fuc-T partially purified from human neuroblastoma cells exhibited the ability of Lex and Ley synthesis, but not that of sLex synthesis, its substrate specificity being similar to that of hFuc-TIV, but quite different from those of the other four (44Foster C.F. Gillies D.R.B. Glick M.C. J. Biol. Chem. 1991; 266: 3526-3531Abstract Full Text PDF PubMed Google Scholar). Mollicone et al. (45Mollicone R. Gibaud A. François A. Ratcliffe M. Oriol R. Eur. J. Biochem. 1990; 191: 169-176Crossref PubMed Scopus (127) Google Scholar) reported that the substrate specificity of α1,3Fuc-T expressed in the brain is very similar to that of hFuc-TIV, and the α1,3Fuc-T in the brain cannot be distinguished from hFuc-TIV by means of enzymatic characteristics. However, the transcript for the mFuc-TIV gene was not detected in mouse brain on Northern blot analysis (11Gersten K.M. Natsuka S. Trinchera M. Petryniak B. Kelly R.J. Hiraiwa N. Jenkins N.A. Gilbert D.J. Copeland N.G. Lowe J.B. J. Biol. Chem. 1995; 270: 25047-25056Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar), whereas it was abundantly expressed in other tissues, such as stomach, colon, spleen, and uterus, and at intermediate levels expressed in lung, testis, ovary, and small intestine (11Gersten K.M. Natsuka S. Trinchera M. Petryniak B. Kelly R.J. Hiraiwa N. Jenkins N.A. Gilbert D.J. Copeland N.G. Lowe J.B. J. Biol. Chem. 1995; 270: 25047-25056Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar). The above results raise a possibility that the Lex epitope in the CNS may be synthesized by unknown α1,3Fuc-T(s), of which genes have not been cloned yet. In the present study, we isolated a novel α1,3Fuc-T gene from a mouse brain cDNA library by the expression cloning method and named it the mFuc-TIX (mFUT9) gene. The transcript for the mFuc-TIX gene, which was mainly expressed in brain and kidney, was apparently detected in neuronal cells but not in glial cells including astrocytes in the CNS on in situhybridization in the present study. Previous immunohistochemical studies revealed the existence of the CD15 (Lex) epitope in both neuronal cells and astrocytes (32Bartsch D. Mai J.K. Cell Tissue Res. 1991; 263: 353-366Crossref PubMed Scopus (38) Google Scholar, 33Marani E. Mai J.K. Histochem. J. 1992; 24: 852-868Crossref PubMed Scopus (39) Google Scholar, 34Oudega M. Marani E. Thomeer R.T.W.M. Histochem. J. 1992; 24: 869-877Crossref PubMed Scopus (17) Google Scholar, 35Streit A. Yuen C.-T. Loveless R.W. Lawson A.M. Finne J. Schmitz B. Feizi T. Stern C.D. J. Neurochem. 1996; 66: 834-844Crossref PubMed Scopus (78) Google Scholar, 36Ashwell K.W.S. Mai J.K. Cell Tissue Res. 1997; 289: 17-23Crossref PubMed Scopus (24) Google Scholar, 42Fox N. Damjanov I. Martinez-Hernandez A. Knowles B.B. Solter D. Dev. Biol. 1981; 83: 391-398Crossref PubMed Scopus (248) Google Scholar, 43Mai J.K. Schönlau C.H. Histochem. J. 1992; 24: 878-889Crossref PubMed Scopus (27) Google Scholar, 46Reifenberger G. Sieth P. Niederhaus M. Wechsler W. Histochem. J. 1992; 24: 890-901Crossref PubMed Scopus (27) Google Scholar, 47Morres S.A. Mai J.K. Teckhaus L. Histochem. J. 1992; 24: 902-909Crossref PubMed Scopus (11) Google Scholar, 48Satoh J. Kim S.U. J. Neurosci. Res. 1994; 37: 466-474Crossref PubMed Scopus (32) Google Scholar). The present study strongly indicated that the novel mFuc-TIX is responsible for the Lex synthesis in the neurons but not in the glial cells in the CNS. To date, eight human fucosyltransferase (Fuc-T) genes have been cloned,i.e. two α1,2Fuc-Ts, five α1,3Fuc-Ts, and one α1,6Fuc-T. Costache and co-workers (25Costache M. Apoil P.-A. Cailleau A. Elmgren A. Larson G. Henry S. Blancher A. Iordachescu D. Oriol R. Mollicone R. J. Biol. Chem. 1997; 272: 29721-29728Abstract Full Text Full Text PDF PubMed Scopus (93) Google Scholar) named the eight Fuc-Ts, FUT1 to FUT8. FUT1 and FUT2 are α1,2Fuc-Ts corresponding to the H and Se enzymes, respectively (49Larsen R.D. Ernst L.K. Nair R.P. Lowe J.B. Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 6674-6678Crossref PubMed Scopus (303) Google Scholar, 50Rouquier S. Lowe J.B. Kelly R.J. Fertitta A.L. Lennon G.G. Giorgi D. J. Biol. Chem. 1995; 270: 4632-4639Abstract Full Text Full Text PDF PubMed Scopus (165) Google Scholar, 51Kudo T. Iwasaki H. Nishihara S. Shinya N. Ando T. Narimatsu I. Narimatsu H. J. Biol. Chem. 1996; 271: 9830-9837Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 52Kaneko M. Nishihara S. Shinya N. Kudo T. Iwasaki H. Seno T. Okubo Y. Narimatsu H. Blood. 1997; 90: 839-849Crossref PubMed Google Scholar). FUT3, -4, -5, -6, and -7 are α1,3Fuc-Ts corresponding to Fuc-TIII, -IV, -V, -VI, and -VII, respectively, according to Lowe's nomenclature (1Kukowska-Latallo J.F. Larsen R.D. Nair R.P. Lowe J.B. Genes Dev. 1990; 4: 1288-1303Crossref PubMed Scopus (473) Google Scholar, 2Lowe J.B. Kukowska-Latallo J.F. Nair R.P. Larsen R.D. Marks R.M. Macher B.A. Kelly R.J. Ernst L.K. J. Biol. Chem. 1991; 266: 17467-17477Abstract Full Text PDF PubMed Google Scholar, 4Weston B.W. Nair R.P. Larsen R.D. Lowe J.B. J. Biol. Chem. 1992; 267: 4152-4160Abstract Full Text PDF PubMed Google Scholar, 5Weston B.W. Smith P.L. Kelly R.J. Lowe J.B. J. Biol. Chem. 1992; 267: 24575-24584Abstract Full Text PDF PubMed Google Scholar, 7Sasaki K. Kurata K. Funayama K. Nagata M. Watanabe E. Ohta S. Hanai N. Nishi T. J. Biol. Chem. 1994; 269: 14730-14737Abstract Full Text PDF PubMed Google Scholar, 8Natsuka S. Gersten K.M. Zenita K. Kannagi R. Lowe J.B. J. Biol. Chem. 1994; 269: 16789-16794Abstract Full Text PDF PubMed Google Scholar). FUT8 is an α1,6Fuc-T of which the gene was originally cloned by Uozumi et al. (53Uozumi N. Yanagidani S. Miyoshi E. Ihara Y. Sakuma T. Gao C.-X. Teshima T. Fujii S. Shiba T. Taniguchi N. J. Biol. Chem. 1996; 271: 27810-27817Abstract Full Text Full Text PDF PubMed Scopus (172) Google Scholar). The gene encoding a mouse homologue corresponding to the human FUT8 (54Yanagidani S. Uozumi N. Ihara Y. Miyoshi E. Yamaguchi N. Taniguchi N. J. Biochem. (Tokyo). 1997; 121: 626-632Crossref PubMed Scopus (136) Google Scholar) has not been cloned yet. A novel α1,3Fuc-T, of which the gene was isolated from mouse brain tissue in the present study, will be referred to as murine Fuc-TIX (mFuc-TIX) according to the designation of Lowe and co-workers (1,2,4,5,7,8,54). Poly(A)+-rich RNA was isolated with OligotexTM-dT30<Super> (Roche, Tokyo, Japan) from an adult BALB/c mouse brain. Complementary DNAs were synthesized with oligo(dT) primers derived from poly(A)+-rich RNA using a Superscript Choice System for cDNA Synthesis (Life Technologies, Inc.). A cDNA library was constructed by inserting size-fractionated cDNAs (more than 1.5 kb) into an expression vector, pAMo (7Sasaki K. Kurata K. Funayama K. Nagata M. Watanabe E. Ohta S. Hanai N. Nishi T. J. Biol. Chem. 1994; 269: 14730-14737Abstract Full Text PDF PubMed Google Scholar, 55Sasaki K. Watanabe E. Kawashima K. Sekine S. Dohi T. Oshima M. Hanai N. Nishi T. Hasegawa M. J. Biol. Chem. 1993; 268: 22782-22787Abstract Full Text PDF PubMed Google Scholar), using SfiI adaptors. We obtained about 1 × 106 independent clones as a cDNA library and extracted plasmid DNAs from the library. The expression cloning method involving Namalwa cells (human Burkitt lymphoma cells) was described in detail in our previous papers (7Sasaki K. Kurata K. Funayama K. Nagata M. Watanabe E. Ohta S. Hanai N. Nishi T. J. Biol. Chem. 1994; 269: 14730-14737Abstract Full Text PDF PubMed Google Scholar, 55Sasaki K. Watanabe E. Kawashima K. Sekine S. Dohi T. Oshima M. Hanai N. Nishi T. Hasegawa M. J. Biol. Chem. 1993; 268: 22782-22787Abstract Full Text PDF PubMed Google Scholar). Namalwa cells were transfected with cDNAs from the cDNA library by electroporation using a Gene-Pulser (Bio-Rad) and selected in the presence of geneticin (0.6 mg/ml) (Life Technologies, Inc.) for 2 weeks to obtain stable transformant cells. The Namalwa cells growing after the geneticin selection were stained with an anti-Lexmonoclonal antibody (mAb) (PM-81; IgM), followed by staining with fluorescein isothiocyanate-conjugated goat anti-mouse IgM (Cappel) and then cell sorting with an Epics Elite cell sorter (Coulter). The cells expressing the Lex epitope were enriched by four rounds of cell sorting. The plasmids were recovered from the Lex-positive cells by Hirt's method (56Margolskee R.F. Kavathas P. Berg P. Mol. Cell. Biol. 1988; 8: 2837-2847Crossref PubMed Scopus (125) Google Scholar). For nucleotide sequencing of the cDNA isolated, we excised the insert by KpnI and HindIII digestion, and then the insert was subcloned into a pBluescript SK(−) vector (pBS). Sequencing of the insert was performed by an ordinary method,i.e. the dideoxy chain termination method using an ALF DNA sequencer (Amersham Pharmacia Biotech). The cDNA obtained was named murine Fuc-TIX (mFuc-TIX). Namalwa cells were maintained in RPMI 1640 medium (Life Technologies, Inc.) supplemented with 10% heat-inactivated fetal calf serum. The pAMo plasmid DNA containing the mFuc-TIX cDNA (pAMo-mFT9) was transfected into Namalwa cells. After exposure to geneticin for 2 weeks, we established Namalwa cells which stably expressed the mFuc-TIX cDNA (Namalwa-mFT9 cells). In previous studies, we established a series of Namalwa cells stably expressing each of five different human α1,3Fuc-T genes, named Namalwa-hFT3, -hFT4, -hFT5, -hFT6, and -hFT7 cells (18Kimura H. Shinya N. Nishihara S. Kaneko M. Irimura T. Narimatsu H. Biochem. Biophys. Res. Commun. 1997; 237: 131-137Crossref PubMed Scopus (39) Google Scholar, 57Kimura H. Kudo T. Nishihara S. Iwasaki H. Shinya N. Watanabe R. Honda H. Takemura F. Narimatsu H. Glycoconj. J. 1995; 12: 802-812Crossref PubMed Scopus (17) Google Scholar). In this study, we isolated the mFuc-TIV gene by the polymerase chain reaction (PCR) method, as described later, and inserted themFuc-TIV gene into the pAMo vector, by which we established Namalwa cells stably expressing mFuc-TIV (Namalwa-mFT4 cells). These stable transformant cells were used as controls in the following experiments in comparison with Namalwa-mFT9 cells. The mFuc-TIX and mFuc-TIV genes were subcloned into the pCDM8 vector for transient expression of the genes in COS-1 cells. The hFuc-TVI and hFuc-TIII genes, which were subcloned into the pCDM8 vector in the previous study, were also transiently transfected into COS-1 cells. The COS-1 cells transfected transiently with the respective genes were subjected to flow cytometry analysis, and the cell homogenates were used for measurement of enzyme activity toward oligosaccharides. For flow cytometry analysis, the cells were incubated with each of the mAbs, i.e. two anti-Lex mAbs, PM-81, which was a kind gift from Dr. D. Marcus, and 73–30 (IgM), which was purchased from Seikagaku Kogyo Co., Ltd. (Tokyo, Japan), an anti-sLexmAb, KM-93 (IgM), and an anti-Lewis a (Lea) mAb, 7LE (IgM), which were purchased from Seikagaku Kogyo, Co., Ltd., and an anti-Ley mAb, AH-6 (IgM), which was a kind gift from Otsuka Inc. (Tokushima, Japan). After incubation with the first antibody (10 μg/ml), the cells were stained with fluorescein isothiocyanate-conjugated goat anti-mouse IgM (Cappel) and then subjected to flow cytometry analysis with an Epics Elite cell sorter. Lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) were purchased from Oxford Gycosystems (United Kingdom) and pyridylaminated according to the method of Kondo et al. (58Kondo A. Suzuki J. Kuraya N. Hase S. Kato I. Ikenaka T. Agric. Biol. Chem. 1990; 54: 2169-2170Crossref PubMed Scopus (195) Google Scholar). Pyridylaminated LNnT (LNnT-PA) was sialylated with the recombinant β-galactoside α2,3-sialyltransferase expressed in Namalwa cells (55Sasaki K. Watanabe E. Kawashima K. Sekine S. Dohi T. Oshima M. Hanai N. Nishi T. Hasegawa M. J. Biol. Chem. 1993; 268: 22782-22787Abstract Full Text PDF PubMed Google Scholar), resulting in the production of pyridylaminated α2,3-sialyl lacto-N-neotetraose (α2,3-sialyl LNnT-PA), and the product, α2,3-sialyl LNnT-PA, was purified by high pressure liquid chromatography (Nihon Bunko, Tokyo, Japan). Fifteen micrograms of pCDM8 DNA containing each gene was transfected into COS-1 cells in combination with 1 μg of the β-actin promotor-driven luciferase expression vector as an indicator of the transfection efficiency. Lysates of COS-1 cells transfected transiently with the respective genes were used for assaying the substrate specificities toward LNT-PA, LNnT-PA, and α2,3-sialyl LNnT-PA. The cells were harvested after 48 h incubation and separated into 3 aliquots. Total RNA was extracted from 1 aliquot. The 2nd aliquot was subjected to the assaying of luciferase activity and fucosyltransferase activity and the 3rd aliquot to flow cytometry analysis by the same method as described above. The c" @default.
- W2034175227 created "2016-06-24" @default.
- W2034175227 creator A5014499294 @default.
- W2034175227 creator A5014538371 @default.
- W2034175227 creator A5027664329 @default.
- W2034175227 creator A5033004946 @default.
- W2034175227 creator A5060119598 @default.
- W2034175227 creator A5069532802 @default.
- W2034175227 creator A5087276601 @default.
- W2034175227 date "1998-10-01" @default.
- W2034175227 modified "2023-10-16" @default.
- W2034175227 title "Expression Cloning and Characterization of a Novel Murine α1,3-Fucosyltransferase, mFuc-TIX, That Synthesizes the Lewis x (CD15) Epitope in Brain and Kidney" @default.
- W2034175227 cites W1492702567 @default.
- W2034175227 cites W1523026250 @default.
- W2034175227 cites W1532966372 @default.
- W2034175227 cites W1536901694 @default.
- W2034175227 cites W1553410372 @default.
- W2034175227 cites W1587171635 @default.
- W2034175227 cites W1647336621 @default.
- W2034175227 cites W1720344590 @default.
- W2034175227 cites W1734254189 @default.
- W2034175227 cites W1957652308 @default.
- W2034175227 cites W1968104539 @default.
- W2034175227 cites W1977606211 @default.
- W2034175227 cites W1978364683 @default.
- W2034175227 cites W1980947693 @default.
- W2034175227 cites W1987022340 @default.
- W2034175227 cites W1990856978 @default.
- W2034175227 cites W1993934770 @default.
- W2034175227 cites W1994065019 @default.
- W2034175227 cites W1994711900 @default.
- W2034175227 cites W2000199078 @default.
- W2034175227 cites W2000867153 @default.
- W2034175227 cites W2001057012 @default.
- W2034175227 cites W2001762576 @default.
- W2034175227 cites W2017798820 @default.
- W2034175227 cites W2021570486 @default.
- W2034175227 cites W2023467928 @default.
- W2034175227 cites W2028022342 @default.
- W2034175227 cites W2035258261 @default.
- W2034175227 cites W2039666889 @default.
- W2034175227 cites W2040043387 @default.
- W2034175227 cites W2040435897 @default.
- W2034175227 cites W2040666939 @default.
- W2034175227 cites W2045478474 @default.
- W2034175227 cites W2049490472 @default.
- W2034175227 cites W2050641894 @default.
- W2034175227 cites W2052299218 @default.
- W2034175227 cites W2055572066 @default.
- W2034175227 cites W2063177186 @default.
- W2034175227 cites W2070671845 @default.
- W2034175227 cites W2073730311 @default.
- W2034175227 cites W2074262571 @default.
- W2034175227 cites W2076445790 @default.
- W2034175227 cites W2079409548 @default.
- W2034175227 cites W2079657455 @default.
- W2034175227 cites W2082439688 @default.
- W2034175227 cites W2089868147 @default.
- W2034175227 cites W2092418829 @default.
- W2034175227 cites W2092766186 @default.
- W2034175227 cites W2094438579 @default.
- W2034175227 cites W2095275868 @default.
- W2034175227 cites W2136911663 @default.
- W2034175227 cites W2158343596 @default.
- W2034175227 cites W2168847939 @default.
- W2034175227 cites W2324740525 @default.
- W2034175227 cites W2401833872 @default.
- W2034175227 cites W24722359 @default.
- W2034175227 cites W2700239370 @default.
- W2034175227 cites W423258196 @default.
- W2034175227 cites W4294216491 @default.
- W2034175227 doi "https://doi.org/10.1074/jbc.273.41.26729" @default.
- W2034175227 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9756916" @default.
- W2034175227 hasPublicationYear "1998" @default.
- W2034175227 type Work @default.
- W2034175227 sameAs 2034175227 @default.
- W2034175227 citedByCount "99" @default.
- W2034175227 countsByYear W20341752272012 @default.
- W2034175227 countsByYear W20341752272013 @default.
- W2034175227 countsByYear W20341752272014 @default.
- W2034175227 countsByYear W20341752272015 @default.
- W2034175227 countsByYear W20341752272016 @default.
- W2034175227 countsByYear W20341752272018 @default.
- W2034175227 countsByYear W20341752272020 @default.
- W2034175227 countsByYear W20341752272021 @default.
- W2034175227 countsByYear W20341752272022 @default.
- W2034175227 countsByYear W20341752272023 @default.
- W2034175227 crossrefType "journal-article" @default.
- W2034175227 hasAuthorship W2034175227A5014499294 @default.
- W2034175227 hasAuthorship W2034175227A5014538371 @default.
- W2034175227 hasAuthorship W2034175227A5027664329 @default.
- W2034175227 hasAuthorship W2034175227A5033004946 @default.
- W2034175227 hasAuthorship W2034175227A5060119598 @default.
- W2034175227 hasAuthorship W2034175227A5069532802 @default.
- W2034175227 hasAuthorship W2034175227A5087276601 @default.
- W2034175227 hasBestOaLocation W20341752271 @default.
- W2034175227 hasConcept C10205521 @default.
- W2034175227 hasConcept C104317684 @default.