Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034192128> ?p ?o ?g. }
- W2034192128 endingPage "62" @default.
- W2034192128 startingPage "50" @default.
- W2034192128 abstract "Oil composition and properties including density, viscosity, asphaltene, saturate, aromatics and resin contents are responsible factors for the formation of water-in-crude-oil emulsions. These factors can be used to develop an stability index which determines states of water-in-oil emulsion in terms of either an unstable, entrained, mesostable or stable conditions. It is important to note that most of the regression models cannot capture the non-linear relationships involved in the formation of these emulsions. This study deals with the prediction of water-in-oil emulsions stability by an adaptive neuro-fuzzy inference system (ANFIS) with basic compositional factors such as density, viscosity and percentages of SARA (saturates, aromatics, resins, and asphaltenes) components. In the computational method, grid partition and subtractive clustering fuzzy inference systems were tried to generate the optimum fuzzy rule base sets. The stability estimation was conducted by applying hybrid learning algorithm and the model performance was tested by the means of distinct test data set randomly selected from the experimental domain. The ANFIS-based predictions were also compared to the conventional regression approach by means of various descriptive statistical indicators, such as root mean-square error (RMSE), index of agreement (IA), the factor of two (FA2), fractional variance (FV), proportion of systematic error (PSE), etc. With trying various types of fuzzy inference system (FIS) structures and several numbers of training epochs ranging from 1 to 100, the lowest root mean square error (RMSE = 2.0907) and the highest determination coefficient (R2 = 0.967) were obtained with subtractive clustering method of a first-order Sugeno type FIS. For the optimum ANFIS structure, input variables were fuzzified with four Gaussian membership functions, and the number of training epochs was computed as 21. In the computational analysis, the predictive performance of the ANFIS model was examined for the following ranges of the clustering parameters: range of influence (ROI) = 0.45–0.60, squash factor (SF) = 1.20–1.35, accept ratio (AR) = 0.40–0.55, and reject ratio (RR) = 0.10–0.20. Results indicated that ROI, SF, AR and RR were obtained to be 0.54, 1.25, 0.50 and 0.15, respectively, for the best FIS structure. It was clearly concluded that the proposed ANFIS model demonstrated a superior predictive performance on forecasting of water-in-oil emulsions stability. Findings of this study clearly indicated that the neuro-fuzzy modeling could be successfully used for predicting the stability of a specific water-in-oil mixture to provide a good discrimination between several visual stability conditions." @default.
- W2034192128 created "2016-06-24" @default.
- W2034192128 creator A5020932814 @default.
- W2034192128 creator A5037345517 @default.
- W2034192128 creator A5041259200 @default.
- W2034192128 date "2011-09-01" @default.
- W2034192128 modified "2023-10-14" @default.
- W2034192128 title "An adaptive neuro-fuzzy approach for modeling of water-in-oil emulsion formation" @default.
- W2034192128 cites W1542813816 @default.
- W2034192128 cites W1570834090 @default.
- W2034192128 cites W1969000438 @default.
- W2034192128 cites W1981436432 @default.
- W2034192128 cites W1985876292 @default.
- W2034192128 cites W1991923660 @default.
- W2034192128 cites W2002789696 @default.
- W2034192128 cites W2008552659 @default.
- W2034192128 cites W2011803410 @default.
- W2034192128 cites W2019207321 @default.
- W2034192128 cites W2026755748 @default.
- W2034192128 cites W2028922767 @default.
- W2034192128 cites W2040263211 @default.
- W2034192128 cites W2041346182 @default.
- W2034192128 cites W2046777120 @default.
- W2034192128 cites W2053769700 @default.
- W2034192128 cites W2053779593 @default.
- W2034192128 cites W2054545697 @default.
- W2034192128 cites W2064587207 @default.
- W2034192128 cites W2064815513 @default.
- W2034192128 cites W2066504747 @default.
- W2034192128 cites W2067336855 @default.
- W2034192128 cites W2071585322 @default.
- W2034192128 cites W2076323593 @default.
- W2034192128 cites W2076871268 @default.
- W2034192128 cites W2076889645 @default.
- W2034192128 cites W2079325629 @default.
- W2034192128 cites W2079572060 @default.
- W2034192128 cites W2082180494 @default.
- W2034192128 cites W2105254492 @default.
- W2034192128 cites W2105796585 @default.
- W2034192128 cites W2135092349 @default.
- W2034192128 cites W2323049472 @default.
- W2034192128 cites W93007491 @default.
- W2034192128 doi "https://doi.org/10.1016/j.colsurfa.2011.08.051" @default.
- W2034192128 hasPublicationYear "2011" @default.
- W2034192128 type Work @default.
- W2034192128 sameAs 2034192128 @default.
- W2034192128 citedByCount "64" @default.
- W2034192128 countsByYear W20341921282012 @default.
- W2034192128 countsByYear W20341921282013 @default.
- W2034192128 countsByYear W20341921282014 @default.
- W2034192128 countsByYear W20341921282015 @default.
- W2034192128 countsByYear W20341921282016 @default.
- W2034192128 countsByYear W20341921282017 @default.
- W2034192128 countsByYear W20341921282018 @default.
- W2034192128 countsByYear W20341921282019 @default.
- W2034192128 countsByYear W20341921282020 @default.
- W2034192128 countsByYear W20341921282021 @default.
- W2034192128 countsByYear W20341921282022 @default.
- W2034192128 countsByYear W20341921282023 @default.
- W2034192128 crossrefType "journal-article" @default.
- W2034192128 hasAuthorship W2034192128A5020932814 @default.
- W2034192128 hasAuthorship W2034192128A5037345517 @default.
- W2034192128 hasAuthorship W2034192128A5041259200 @default.
- W2034192128 hasConcept C105795698 @default.
- W2034192128 hasConcept C112972136 @default.
- W2034192128 hasConcept C119857082 @default.
- W2034192128 hasConcept C124101348 @default.
- W2034192128 hasConcept C139945424 @default.
- W2034192128 hasConcept C154945302 @default.
- W2034192128 hasConcept C178790620 @default.
- W2034192128 hasConcept C185592680 @default.
- W2034192128 hasConcept C186108316 @default.
- W2034192128 hasConcept C195975749 @default.
- W2034192128 hasConcept C33923547 @default.
- W2034192128 hasConcept C41008148 @default.
- W2034192128 hasConcept C58166 @default.
- W2034192128 hasConcept C65324659 @default.
- W2034192128 hasConcept C73555534 @default.
- W2034192128 hasConceptScore W2034192128C105795698 @default.
- W2034192128 hasConceptScore W2034192128C112972136 @default.
- W2034192128 hasConceptScore W2034192128C119857082 @default.
- W2034192128 hasConceptScore W2034192128C124101348 @default.
- W2034192128 hasConceptScore W2034192128C139945424 @default.
- W2034192128 hasConceptScore W2034192128C154945302 @default.
- W2034192128 hasConceptScore W2034192128C178790620 @default.
- W2034192128 hasConceptScore W2034192128C185592680 @default.
- W2034192128 hasConceptScore W2034192128C186108316 @default.
- W2034192128 hasConceptScore W2034192128C195975749 @default.
- W2034192128 hasConceptScore W2034192128C33923547 @default.
- W2034192128 hasConceptScore W2034192128C41008148 @default.
- W2034192128 hasConceptScore W2034192128C58166 @default.
- W2034192128 hasConceptScore W2034192128C65324659 @default.
- W2034192128 hasConceptScore W2034192128C73555534 @default.
- W2034192128 hasIssue "1-3" @default.
- W2034192128 hasLocation W20341921281 @default.
- W2034192128 hasOpenAccess W2034192128 @default.
- W2034192128 hasPrimaryLocation W20341921281 @default.
- W2034192128 hasRelatedWork W2083791385 @default.