Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034199682> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2034199682 endingPage "160" @default.
- W2034199682 startingPage "139" @default.
- W2034199682 abstract "The initial value problem for an integrable system, such as the Nonlinear Schrödinger equation, is solved by subjecting the linear eigenvalue problem arising from its Lax pair to inverse scattering, and, thus, transforming it to a matrix Riemann-Hilbert problem (RHP) in the spectral variable. In the semiclassical limit, the method of nonlinear steepest descent ([4,5]), supplemented by the g-function mechanism ([3]), is applied to this RHP to produce explicit asymptotic solution formulae for the integrable system. These formule are based on a hyperelliptic Riemann surface $${mathcal {R} = mathcal {R}(x,t)}$$ in the spectral variable, where the space-time variables (x, t) play the role of external parameters. The curves in the x, t plane, separating regions of different genuses of $${mathcal {R}(x,t)}$$ , are called breaking curves or nonlinear caustics. The genus of $${mathcal {R}(x,t)}$$ is related to the number of oscillatory phases in the asymptotic solution of the integrable system at the point x, t. The evolution theorem ([10]) guarantees continuous evolution of the asymptotic solution in the space-time away from the breaking curves. In the case of the analytic scattering data f(z; x, t) (in the NLS case, f is a normalized logarithm of the reflection coefficient with time evolution included), the primary role in the breaking mechanism is played by a phase function $${{Im,h(z;x,t)}}$$ , which is closely related to the g function. Namely, a break can be caused ([10]) either through the change of topology of zero level curves of $${Im,h(z;x,t)}$$ (regular break), or through the interaction of zero level curves of $${{Im,h(z;x,t)}}$$ with singularities of f (singular break). Every time a breaking curve in the x, t plane is reached, one has to prove the validity of the nonlinear steepest descent asymptotics in the region across the curve. In this paper we prove that in the case of a regular break, the nonlinear steepest descent asymptotics can be “automatically” continued through the breaking curve (however, the expressions for the asymptotic solution will be different on the different sides of the curve). Our proof is based on the determinantal formula for h(z; x, t) and its space and time derivatives, obtained in [8,9]. Although the results are stated and proven for the focusing NLS equation, it is clear ([9]) that they can be reformulated for AKNS systems, as well as for the nonlinear steepest descend method in a more general setting." @default.
- W2034199682 created "2016-06-24" @default.
- W2034199682 creator A5032083797 @default.
- W2034199682 creator A5067159581 @default.
- W2034199682 date "2010-01-19" @default.
- W2034199682 modified "2023-09-25" @default.
- W2034199682 title "Nonlinear Steepest Descent Asymptotics for Semiclassical Limit of Integrable Systems: Continuation in the Parameter Space" @default.
- W2034199682 cites W1544715525 @default.
- W2034199682 cites W2042375662 @default.
- W2034199682 cites W2062565740 @default.
- W2034199682 cites W2094541341 @default.
- W2034199682 cites W2500479498 @default.
- W2034199682 cites W4205682100 @default.
- W2034199682 cites W4246037347 @default.
- W2034199682 cites W2333447966 @default.
- W2034199682 doi "https://doi.org/10.1007/s00220-009-0984-0" @default.
- W2034199682 hasPublicationYear "2010" @default.
- W2034199682 type Work @default.
- W2034199682 sameAs 2034199682 @default.
- W2034199682 citedByCount "13" @default.
- W2034199682 countsByYear W20341996822012 @default.
- W2034199682 countsByYear W20341996822014 @default.
- W2034199682 countsByYear W20341996822015 @default.
- W2034199682 countsByYear W20341996822016 @default.
- W2034199682 countsByYear W20341996822020 @default.
- W2034199682 countsByYear W20341996822021 @default.
- W2034199682 countsByYear W20341996822022 @default.
- W2034199682 crossrefType "journal-article" @default.
- W2034199682 hasAuthorship W2034199682A5032083797 @default.
- W2034199682 hasAuthorship W2034199682A5067159581 @default.
- W2034199682 hasBestOaLocation W20341996822 @default.
- W2034199682 hasConcept C121332964 @default.
- W2034199682 hasConcept C134306372 @default.
- W2034199682 hasConcept C158622935 @default.
- W2034199682 hasConcept C158693339 @default.
- W2034199682 hasConcept C158847443 @default.
- W2034199682 hasConcept C179117685 @default.
- W2034199682 hasConcept C200741047 @default.
- W2034199682 hasConcept C26955809 @default.
- W2034199682 hasConcept C33923547 @default.
- W2034199682 hasConcept C37914503 @default.
- W2034199682 hasConcept C535169671 @default.
- W2034199682 hasConcept C62520636 @default.
- W2034199682 hasConcept C84114770 @default.
- W2034199682 hasConceptScore W2034199682C121332964 @default.
- W2034199682 hasConceptScore W2034199682C134306372 @default.
- W2034199682 hasConceptScore W2034199682C158622935 @default.
- W2034199682 hasConceptScore W2034199682C158693339 @default.
- W2034199682 hasConceptScore W2034199682C158847443 @default.
- W2034199682 hasConceptScore W2034199682C179117685 @default.
- W2034199682 hasConceptScore W2034199682C200741047 @default.
- W2034199682 hasConceptScore W2034199682C26955809 @default.
- W2034199682 hasConceptScore W2034199682C33923547 @default.
- W2034199682 hasConceptScore W2034199682C37914503 @default.
- W2034199682 hasConceptScore W2034199682C535169671 @default.
- W2034199682 hasConceptScore W2034199682C62520636 @default.
- W2034199682 hasConceptScore W2034199682C84114770 @default.
- W2034199682 hasIssue "1" @default.
- W2034199682 hasLocation W20341996821 @default.
- W2034199682 hasLocation W20341996822 @default.
- W2034199682 hasOpenAccess W2034199682 @default.
- W2034199682 hasPrimaryLocation W20341996821 @default.
- W2034199682 hasRelatedWork W1554396999 @default.
- W2034199682 hasRelatedWork W1800020650 @default.
- W2034199682 hasRelatedWork W2008714715 @default.
- W2034199682 hasRelatedWork W2041696736 @default.
- W2034199682 hasRelatedWork W2065176133 @default.
- W2034199682 hasRelatedWork W2085656995 @default.
- W2034199682 hasRelatedWork W3086576185 @default.
- W2034199682 hasRelatedWork W38714979 @default.
- W2034199682 hasRelatedWork W1820391636 @default.
- W2034199682 hasRelatedWork W1994937915 @default.
- W2034199682 hasVolume "295" @default.
- W2034199682 isParatext "false" @default.
- W2034199682 isRetracted "false" @default.
- W2034199682 magId "2034199682" @default.
- W2034199682 workType "article" @default.