Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034201903> ?p ?o ?g. }
- W2034201903 endingPage "30" @default.
- W2034201903 startingPage "20" @default.
- W2034201903 abstract "Here we develop a fully automated procedure for the analysis of liquid chromatography–mass spectrometry (LC–MS) datasets collected during the analysis of complex peptide mixtures. We present the underlying algorithm and outcomes of several experiments justifying its applicability. The novelty of our approach is to exploit the multidimensional character of the datasets. It is common knowledge that highly complex peptide mixtures can be analyzed by liquid chromatography coupled with mass spectrometry, but we are not aware of any existing automated MS spectra interpretation procedure designed to take into account the multidimensional character of the data. Our work fills this gap by providing an effective algorithm for this task, allowing for automated conversion of raw data to the list of masses of peptides." @default.
- W2034201903 created "2016-06-24" @default.
- W2034201903 creator A5001574159 @default.
- W2034201903 creator A5007944267 @default.
- W2034201903 creator A5008996018 @default.
- W2034201903 creator A5009926196 @default.
- W2034201903 creator A5023573472 @default.
- W2034201903 creator A5047452231 @default.
- W2034201903 creator A5062372955 @default.
- W2034201903 creator A5067001785 @default.
- W2034201903 creator A5071617273 @default.
- W2034201903 creator A5091375950 @default.
- W2034201903 date "2007-01-01" @default.
- W2034201903 modified "2023-10-15" @default.
- W2034201903 title "Automated reduction and interpretation of multidimensional mass spectra for analysis of complex peptide mixtures" @default.
- W2034201903 cites W1519955500 @default.
- W2034201903 cites W1730869288 @default.
- W2034201903 cites W1964010911 @default.
- W2034201903 cites W1964895626 @default.
- W2034201903 cites W1993767621 @default.
- W2034201903 cites W2001141328 @default.
- W2034201903 cites W2007477730 @default.
- W2034201903 cites W2008438455 @default.
- W2034201903 cites W2050787616 @default.
- W2034201903 cites W2052088499 @default.
- W2034201903 cites W2052714460 @default.
- W2034201903 cites W2073162961 @default.
- W2034201903 cites W2073682446 @default.
- W2034201903 cites W2082346918 @default.
- W2034201903 cites W2084898926 @default.
- W2034201903 cites W2086502504 @default.
- W2034201903 cites W2102342618 @default.
- W2034201903 cites W2105017286 @default.
- W2034201903 cites W2105869274 @default.
- W2034201903 cites W2108725536 @default.
- W2034201903 cites W2114117605 @default.
- W2034201903 cites W2119908867 @default.
- W2034201903 cites W2134389439 @default.
- W2034201903 cites W2135817903 @default.
- W2034201903 cites W2139564441 @default.
- W2034201903 cites W2167443016 @default.
- W2034201903 doi "https://doi.org/10.1016/j.ijms.2006.06.011" @default.
- W2034201903 hasPublicationYear "2007" @default.
- W2034201903 type Work @default.
- W2034201903 sameAs 2034201903 @default.
- W2034201903 citedByCount "15" @default.
- W2034201903 countsByYear W20342019032012 @default.
- W2034201903 countsByYear W20342019032013 @default.
- W2034201903 crossrefType "journal-article" @default.
- W2034201903 hasAuthorship W2034201903A5001574159 @default.
- W2034201903 hasAuthorship W2034201903A5007944267 @default.
- W2034201903 hasAuthorship W2034201903A5008996018 @default.
- W2034201903 hasAuthorship W2034201903A5009926196 @default.
- W2034201903 hasAuthorship W2034201903A5023573472 @default.
- W2034201903 hasAuthorship W2034201903A5047452231 @default.
- W2034201903 hasAuthorship W2034201903A5062372955 @default.
- W2034201903 hasAuthorship W2034201903A5067001785 @default.
- W2034201903 hasAuthorship W2034201903A5071617273 @default.
- W2034201903 hasAuthorship W2034201903A5091375950 @default.
- W2034201903 hasConcept C111335779 @default.
- W2034201903 hasConcept C124101348 @default.
- W2034201903 hasConcept C138885662 @default.
- W2034201903 hasConcept C153180895 @default.
- W2034201903 hasConcept C154945302 @default.
- W2034201903 hasConcept C162324750 @default.
- W2034201903 hasConcept C162356407 @default.
- W2034201903 hasConcept C185592680 @default.
- W2034201903 hasConcept C186060115 @default.
- W2034201903 hasConcept C187736073 @default.
- W2034201903 hasConcept C199360897 @default.
- W2034201903 hasConcept C2524010 @default.
- W2034201903 hasConcept C27206212 @default.
- W2034201903 hasConcept C2778738651 @default.
- W2034201903 hasConcept C2780451532 @default.
- W2034201903 hasConcept C2780861071 @default.
- W2034201903 hasConcept C33923547 @default.
- W2034201903 hasConcept C40325409 @default.
- W2034201903 hasConcept C41008148 @default.
- W2034201903 hasConcept C43617362 @default.
- W2034201903 hasConcept C527412718 @default.
- W2034201903 hasConcept C86803240 @default.
- W2034201903 hasConceptScore W2034201903C111335779 @default.
- W2034201903 hasConceptScore W2034201903C124101348 @default.
- W2034201903 hasConceptScore W2034201903C138885662 @default.
- W2034201903 hasConceptScore W2034201903C153180895 @default.
- W2034201903 hasConceptScore W2034201903C154945302 @default.
- W2034201903 hasConceptScore W2034201903C162324750 @default.
- W2034201903 hasConceptScore W2034201903C162356407 @default.
- W2034201903 hasConceptScore W2034201903C185592680 @default.
- W2034201903 hasConceptScore W2034201903C186060115 @default.
- W2034201903 hasConceptScore W2034201903C187736073 @default.
- W2034201903 hasConceptScore W2034201903C199360897 @default.
- W2034201903 hasConceptScore W2034201903C2524010 @default.
- W2034201903 hasConceptScore W2034201903C27206212 @default.
- W2034201903 hasConceptScore W2034201903C2778738651 @default.
- W2034201903 hasConceptScore W2034201903C2780451532 @default.
- W2034201903 hasConceptScore W2034201903C2780861071 @default.
- W2034201903 hasConceptScore W2034201903C33923547 @default.