Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034203400> ?p ?o ?g. }
- W2034203400 endingPage "1241" @default.
- W2034203400 startingPage "1221" @default.
- W2034203400 abstract "Drug approval processes require extensive testing and have recently put more emphasis on understanding mechanistic drug action in the body including toxicity and safety.1 Consequently, there is an urgent need in the pharmaceutical industry to develop mechanistic pharmacokinetic (PK) models able to both expedite knowledge gain from experimental trials and, simultaneously, address safety concerns. We previously developed a first principles based whole-body PK model, which incorporated physiological dimensions and drug mass transport. In this follow-up article, we demonstrate how the first principles model in combination with novel physiological scaling laws yields more reliable interspecies and intraspecies extrapolation of drug biodistribution. We show how experimental dose–response data in rats for immunosuppressant cyclosporin are sufficient for predicting the biodistribution of this drug in pigs, monkeys, and humans. The predicted drug concentrations extrapolated by interspecies scaling laws match well with the experimental measurements. These promising results demonstrate that the whole-body PK modeling approach not only elucidates drug mechanisms from a biochemical standpoint, but offers better scaling precision. Better models can substantially accelerate the introduction of drug leads to clinical trials and eventually to the market by offering more understanding of the drug mechanisms, aiding in therapy design, and serving as an accurate dosing tool. Drug approval processes require extensive testing and have recently put more emphasis on understanding mechanistic drug action in the body including toxicity and safety.1 Consequently, there is an urgent need in the pharmaceutical industry to develop mechanistic pharmacokinetic (PK) models able to both expedite knowledge gain from experimental trials and, simultaneously, address safety concerns. We previously developed a first principles based whole-body PK model, which incorporated physiological dimensions and drug mass transport. In this follow-up article, we demonstrate how the first principles model in combination with novel physiological scaling laws yields more reliable interspecies and intraspecies extrapolation of drug biodistribution. We show how experimental dose–response data in rats for immunosuppressant cyclosporin are sufficient for predicting the biodistribution of this drug in pigs, monkeys, and humans. The predicted drug concentrations extrapolated by interspecies scaling laws match well with the experimental measurements. These promising results demonstrate that the whole-body PK modeling approach not only elucidates drug mechanisms from a biochemical standpoint, but offers better scaling precision. Better models can substantially accelerate the introduction of drug leads to clinical trials and eventually to the market by offering more understanding of the drug mechanisms, aiding in therapy design, and serving as an accurate dosing tool." @default.
- W2034203400 created "2016-06-24" @default.
- W2034203400 creator A5005691162 @default.
- W2034203400 creator A5014406640 @default.
- W2034203400 creator A5014429141 @default.
- W2034203400 creator A5057719090 @default.
- W2034203400 date "2012-03-01" @default.
- W2034203400 modified "2023-10-10" @default.
- W2034203400 title "Interspecies Scaling in Pharmacokinetics: A Novel Whole-Body Physiologically Based Modeling Framework to Discover Drug Biodistribution Mechanisms in vivo" @default.
- W2034203400 cites W14779392 @default.
- W2034203400 cites W152943885 @default.
- W2034203400 cites W1919792102 @default.
- W2034203400 cites W1956994924 @default.
- W2034203400 cites W1965927171 @default.
- W2034203400 cites W1970593964 @default.
- W2034203400 cites W1971111617 @default.
- W2034203400 cites W1976771657 @default.
- W2034203400 cites W1977683481 @default.
- W2034203400 cites W1979264461 @default.
- W2034203400 cites W1981965848 @default.
- W2034203400 cites W1982989998 @default.
- W2034203400 cites W1984689094 @default.
- W2034203400 cites W1985568051 @default.
- W2034203400 cites W1985640696 @default.
- W2034203400 cites W1992731351 @default.
- W2034203400 cites W2000902397 @default.
- W2034203400 cites W2001498619 @default.
- W2034203400 cites W2002765161 @default.
- W2034203400 cites W2013028640 @default.
- W2034203400 cites W2014065104 @default.
- W2034203400 cites W2014323250 @default.
- W2034203400 cites W2019432521 @default.
- W2034203400 cites W2026962946 @default.
- W2034203400 cites W2032529679 @default.
- W2034203400 cites W2032783083 @default.
- W2034203400 cites W2035649655 @default.
- W2034203400 cites W2035845553 @default.
- W2034203400 cites W2054587638 @default.
- W2034203400 cites W2055804585 @default.
- W2034203400 cites W2057904754 @default.
- W2034203400 cites W2061380805 @default.
- W2034203400 cites W2065171736 @default.
- W2034203400 cites W2073769311 @default.
- W2034203400 cites W2080843536 @default.
- W2034203400 cites W2087311350 @default.
- W2034203400 cites W2093008321 @default.
- W2034203400 cites W2095149001 @default.
- W2034203400 cites W2099474947 @default.
- W2034203400 cites W2107080166 @default.
- W2034203400 cites W2109442819 @default.
- W2034203400 cites W2128257213 @default.
- W2034203400 cites W2134794720 @default.
- W2034203400 cites W2137752893 @default.
- W2034203400 cites W2148589597 @default.
- W2034203400 cites W2168841843 @default.
- W2034203400 cites W2406261612 @default.
- W2034203400 cites W2409424029 @default.
- W2034203400 cites W4248586772 @default.
- W2034203400 doi "https://doi.org/10.1002/jps.22811" @default.
- W2034203400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22105643" @default.
- W2034203400 hasPublicationYear "2012" @default.
- W2034203400 type Work @default.
- W2034203400 sameAs 2034203400 @default.
- W2034203400 citedByCount "55" @default.
- W2034203400 countsByYear W20342034002013 @default.
- W2034203400 countsByYear W20342034002014 @default.
- W2034203400 countsByYear W20342034002015 @default.
- W2034203400 countsByYear W20342034002016 @default.
- W2034203400 countsByYear W20342034002017 @default.
- W2034203400 countsByYear W20342034002018 @default.
- W2034203400 countsByYear W20342034002019 @default.
- W2034203400 countsByYear W20342034002020 @default.
- W2034203400 countsByYear W20342034002021 @default.
- W2034203400 countsByYear W20342034002022 @default.
- W2034203400 countsByYear W20342034002023 @default.
- W2034203400 crossrefType "journal-article" @default.
- W2034203400 hasAuthorship W2034203400A5005691162 @default.
- W2034203400 hasAuthorship W2034203400A5014406640 @default.
- W2034203400 hasAuthorship W2034203400A5014429141 @default.
- W2034203400 hasAuthorship W2034203400A5057719090 @default.
- W2034203400 hasConcept C112705442 @default.
- W2034203400 hasConcept C112930515 @default.
- W2034203400 hasConcept C127413603 @default.
- W2034203400 hasConcept C150903083 @default.
- W2034203400 hasConcept C183696295 @default.
- W2034203400 hasConcept C185867374 @default.
- W2034203400 hasConcept C207001950 @default.
- W2034203400 hasConcept C2777288759 @default.
- W2034203400 hasConcept C2777807558 @default.
- W2034203400 hasConcept C2779652045 @default.
- W2034203400 hasConcept C2780035454 @default.
- W2034203400 hasConcept C41008148 @default.
- W2034203400 hasConcept C70721500 @default.
- W2034203400 hasConcept C71924100 @default.
- W2034203400 hasConcept C86380466 @default.
- W2034203400 hasConcept C86803240 @default.
- W2034203400 hasConcept C98274493 @default.
- W2034203400 hasConceptScore W2034203400C112705442 @default.