Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034207323> ?p ?o ?g. }
- W2034207323 endingPage "533" @default.
- W2034207323 startingPage "521" @default.
- W2034207323 abstract "RVB1/RVB2 (also known as Pontin/Reptin, TIP49/TIP48, RuvbL1/RuvbL2, ECP54/ECP51, INO80H/INO80J, TIH1/TIH2, and TIP49A/TIP49B) are two highly conserved members of the AAA+ family that are present in different protein and nucleoprotein complexes. Recent studies implicate the RVB-containing complexes in many cellular processes such as transcription, DNA damage response, snoRNP assembly, cellular transformation, and cancer metastasis. In this review, we discuss recent advances in our understanding of RVB-containing complexes and their role in these pathways. RVB1/RVB2 (also known as Pontin/Reptin, TIP49/TIP48, RuvbL1/RuvbL2, ECP54/ECP51, INO80H/INO80J, TIH1/TIH2, and TIP49A/TIP49B) are two highly conserved members of the AAA+ family that are present in different protein and nucleoprotein complexes. Recent studies implicate the RVB-containing complexes in many cellular processes such as transcription, DNA damage response, snoRNP assembly, cellular transformation, and cancer metastasis. In this review, we discuss recent advances in our understanding of RVB-containing complexes and their role in these pathways. RVB1 and RVB2 are ATP-binding proteins that belong to the AAA+ (ATPase associated with diverse cellular activities) family of ATPases. RVBs (RVB1 and RVB2) were discovered independently in multiple organisms (Bauer et al., 1998Bauer A. Huber O. Kemler R. Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein.Proc. Natl. Acad. Sci. USA. 1998; 95: 14787-14792Crossref PubMed Scopus (162) Google Scholar, Bauer et al., 2000Bauer A. Chauvet S. Huber O. Usseglio F. Rothbacher U. Aragnol D. Kemler R. Pradel J. Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity.EMBO J. 2000; 19: 6121-6130Crossref PubMed Google Scholar, Kanemaki et al., 1997Kanemaki M. Makino Y. Yoshida T. Kishimoto T. Koga A. Yamamoto K. Yamamoto M. Moncollin V. Egly J.M. Muramatsu M. Tamura T. Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB.Biochem. Biophys. Res. Commun. 1997; 235: 64-68Crossref PubMed Scopus (96) Google Scholar, Kanemaki et al., 1999Kanemaki M. Kurokawa Y. Matsu-ura T. Makino Y. Masani A. Okazaki K. Morishita T. Tamura T.A. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a.J. Biol. Chem. 1999; 274: 22437-22444Crossref PubMed Scopus (122) Google Scholar, Qiu et al., 1998Qiu X.B. Lin Y.L. Thome K.C. Pian P. Schlegel B.P. Weremowicz S. Parvin J.D. Dutta A. An eukaryotic RuvB-like protein (RUVBL1) essential for growth.J. Biol. Chem. 1998; 273: 27786-27793Crossref PubMed Scopus (114) Google Scholar, Salzer et al., 1999Salzer U. Kubicek M. Prohaska R. Isolation, molecular characterization, and tissue-specific expression of ECP-51 and ECP-54 (TIP49), two homologous, interacting erythroid cytosolic proteins.Biochim. Biophys. Acta. 1999; 1446: 365-370Crossref PubMed Scopus (19) Google Scholar, Wood et al., 2000Wood M.A. McMahon S.B. Cole M.D. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc.Mol. Cell. 2000; 5: 321-330Abstract Full Text Full Text PDF PubMed Scopus (245) Google Scholar) and implicated in many cellular pathways (Figure 1). The structure of the RVB1/RVB2 complex that has recently been elucidated suggests that RVBs could act as a scaffolding protein, explaining its appearance in diverse cellular protein complexes (Matias et al., 2006Matias P.M. Gorynia S. Donner P. Carrondo M.A. Crystal structure of the human AAA+ protein RuvBL1.J. Biol. Chem. 2006; 281: 38918-38929Crossref PubMed Scopus (117) Google Scholar, Puri et al., 2007Puri T. Wendler P. Sigala B. Saibil H. Tsaneva I.R. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex.J. Mol. Biol. 2007; 366: 179-192Crossref PubMed Scopus (72) Google Scholar, Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). RVBs are part of various chromatin-remodeling complexes (Jha et al., 2008Jha S. Shibata E. Dutta A. Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage.Mol. Cell. Biol. 2008; 28: 2690-2700Crossref PubMed Scopus (119) Google Scholar, Jin et al., 2005Jin J. Cai Y. Yao T. Gottschalk A.J. Florens L. Swanson S.K. Gutierrez J.L. Coleman M.K. Workman J.L. Mushegian A. et al.A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex.J. Biol. Chem. 2005; 280: 41207-41212Crossref PubMed Scopus (173) Google Scholar, Jonsson et al., 2004Jonsson Z.O. Jha S. Wohlschlegel J.A. Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex.Mol. Cell. 2004; 16: 465-477Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar, Mizuguchi et al., 2004Mizuguchi G. Shen X. Landry J. Wu W.H. Sen S. Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex.Science. 2004; 303: 343-348Crossref PubMed Scopus (928) Google Scholar, Shen et al., 2000Shen X. Mizuguchi G. Hamiche A. Wu C. A chromatin remodelling complex involved in transcription and DNA processing.Nature. 2000; 406: 541-544Crossref PubMed Scopus (627) Google Scholar) and are required for their activities (Jha et al., 2008Jha S. Shibata E. Dutta A. Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage.Mol. Cell. Biol. 2008; 28: 2690-2700Crossref PubMed Scopus (119) Google Scholar, Jonsson et al., 2004Jonsson Z.O. Jha S. Wohlschlegel J.A. Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex.Mol. Cell. 2004; 16: 465-477Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar). As part of chromatin-remodeling complexes, they regulate the accessibility of DNA to the proteins involved in transcription and DNA damage repair by regulating the position or modification of nucleosomes. The RVB proteins have also been implicated in cellular transformation by Myc and β-catenin through their chromatin-remodeling function (Feng et al., 2003Feng Y. Lee N. Fearon E.R. TIP49 regulates beta-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling.Cancer Res. 2003; 63: 8726-8734PubMed Google Scholar, Wood et al., 2000Wood M.A. McMahon S.B. Cole M.D. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc.Mol. Cell. 2000; 5: 321-330Abstract Full Text Full Text PDF PubMed Scopus (245) Google Scholar) and in the assembly and maturation of snoRNPs (Newman et al., 2000Newman D.R. Kuhn J.F. Shanab G.M. Maxwell E.S. Box C/D snoRNA-associated proteins: Two pairs of evolutionarily ancient proteins and possible links to replication and transcription.RNA. 2000; 6: 861-879Crossref PubMed Scopus (108) Google Scholar, Watkins et al., 2002Watkins N.J. Dickmanns A. Luhrmann R. Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5K protein, for the hierarchical assembly of the box C/D snoRNP.Mol. Cell. Biol. 2002; 22: 8342-8352Crossref PubMed Scopus (167) Google Scholar, Watkins et al., 2004Watkins N.J. Lemm I. Ingelfinger D. Schneider C. Hossbach M. Urlaub H. Luhrmann R. Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex.Mol. Cell. 2004; 16: 789-798Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar). In this review, we discuss the role of RVBs in these complexes and describe important questions to be addressed in the future. RVB1 and RVB2 are very similar, with conserved Walker A (P loop, which binds and orients the γ-phosphate for ATP hydrolysis) and Walker B boxes, an arginine finger (Arg), and sensor domains I and II to sense whether the protein is bound to the di- or trinucleotide (Figure 2A). The crystallographic structure of RVB1 alone and the electron-microscopic structure of RVB1/RVB2 shed new light on these enigmatic proteins (Gribun et al., 2008Gribun A. Cheung K.L. Huen J. Ortega J. Houry W.A. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex.J. Mol. Biol. 2008; 376: 1320-1333Crossref PubMed Scopus (69) Google Scholar, Matias et al., 2006Matias P.M. Gorynia S. Donner P. Carrondo M.A. Crystal structure of the human AAA+ protein RuvBL1.J. Biol. Chem. 2006; 281: 38918-38929Crossref PubMed Scopus (117) Google Scholar, Puri et al., 2007Puri T. Wendler P. Sigala B. Saibil H. Tsaneva I.R. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex.J. Mol. Biol. 2007; 366: 179-192Crossref PubMed Scopus (72) Google Scholar, Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). The high-resolution crystal structure of human RVB1 shows that RVB1 assembles as a hexamer and that each monomer has three distinct domains, i.e., domain I (1–120 aa + 296–365 aa), domain II (121–295 aa), and domain III (368–456 aa) (Figure 2B) (Matias et al., 2006Matias P.M. Gorynia S. Donner P. Carrondo M.A. Crystal structure of the human AAA+ protein RuvBL1.J. Biol. Chem. 2006; 281: 38918-38929Crossref PubMed Scopus (117) Google Scholar). Domain I of RVB1 forms the core domain similar to the AAA+ module of other family members (Matias et al., 2006Matias P.M. Gorynia S. Donner P. Carrondo M.A. Crystal structure of the human AAA+ protein RuvBL1.J. Biol. Chem. 2006; 281: 38918-38929Crossref PubMed Scopus (117) Google Scholar, Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). The two halves of domain I are separated by ∼170 amino acids that form domain II, which is unique to RVB1, among the AAA+ proteins. This ATPase insert domain II is attached to the ATPase domain I by a flexible hairpin-shaped linker composed of two β strands and has been proposed to be important for functions related to DNA/RNA binding (Matias et al., 2006Matias P.M. Gorynia S. Donner P. Carrondo M.A. Crystal structure of the human AAA+ protein RuvBL1.J. Biol. Chem. 2006; 281: 38918-38929Crossref PubMed Scopus (117) Google Scholar) or oligomerization (Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). Domain III is composed of four α helices, which serve to cap the nucleotide-binding pocket in domain I, and is similar to the domain II of bacterial RuvB ATPase. The low-resolution structure of the RVB1/RVB2 complex has been solved by electron microscopy (EM) (Gribun et al., 2008Gribun A. Cheung K.L. Huen J. Ortega J. Houry W.A. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex.J. Mol. Biol. 2008; 376: 1320-1333Crossref PubMed Scopus (69) Google Scholar, Puri et al., 2007Puri T. Wendler P. Sigala B. Saibil H. Tsaneva I.R. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex.J. Mol. Biol. 2007; 366: 179-192Crossref PubMed Scopus (72) Google Scholar, Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). In these studies, the RVB1/RVB2 complexes were assembled using separately purified recombinant proteins expressed in bacteria (Gribun et al., 2008Gribun A. Cheung K.L. Huen J. Ortega J. Houry W.A. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex.J. Mol. Biol. 2008; 376: 1320-1333Crossref PubMed Scopus (69) Google Scholar, Puri et al., 2007Puri T. Wendler P. Sigala B. Saibil H. Tsaneva I.R. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex.J. Mol. Biol. 2007; 366: 179-192Crossref PubMed Scopus (72) Google Scholar) or from insect cells expressing both proteins (Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). Although RVB1 or RVB2 expressed individually are monomeric at 5 μM, they hexamerize at a higher concentration (40 μM) (Gribun et al., 2008Gribun A. Cheung K.L. Huen J. Ortega J. Houry W.A. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex.J. Mol. Biol. 2008; 376: 1320-1333Crossref PubMed Scopus (69) Google Scholar) and in the presence of ADP or ATP-Mg2+ (Puri et al., 2007Puri T. Wendler P. Sigala B. Saibil H. Tsaneva I.R. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex.J. Mol. Biol. 2007; 366: 179-192Crossref PubMed Scopus (72) Google Scholar). Mixing RVB1 and RVB2 purified from bacteria promotes oligomerization (Gribun et al., 2008Gribun A. Cheung K.L. Huen J. Ortega J. Houry W.A. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex.J. Mol. Biol. 2008; 376: 1320-1333Crossref PubMed Scopus (69) Google Scholar). Two groups have reported that human or yeast RVB proteins (1 and 2 together) form a double-hexameric ring, and a third group has suggested that yeasts RVB1 and RVB2 form a single hexameric ring. Even when RVB1 and RVB2 form a double hexamer, the double hexamer can partially dissociate into a single hexamer enriched in RVB1, and antibodies specific for one of the subunits selectively decorate one end of the double hexamer (Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). Taken together, these results suggest that the highly similar RVB1 and RVB2 proteins can exist as monomers, homo- or hetero-hexamers, and as a double hexamer (most likely made of two homo-hexamers). When RVB1 and RVB2 are in a double-hexamer conformation, domains I and III form the hexameric rings, similar to those observed for other AAA+ ATPases. The two rings are asymmetric, with the top ring being slightly wider than the bottom. The two RVB rings interact in a back-to-back fashion through their domain II (Figure 2C) (Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). The interaction domains are located closer to one of the two rings formed by the AAA+ core domains, producing the asymmetry between the rings. An isolated domain II has a structure similar to that of the single-stranded DNA-binding domains of replication protein A (RPA) and can bind single-stranded DNA, double-stranded DNA, and RNA (Matias et al., 2006Matias P.M. Gorynia S. Donner P. Carrondo M.A. Crystal structure of the human AAA+ protein RuvBL1.J. Biol. Chem. 2006; 281: 38918-38929Crossref PubMed Scopus (117) Google Scholar). Whereas domain II is available for binding nucleic acid when the RVB1 protein forms a single hexamer, it is unclear whether the inter-ring interactions in the double hexamer permit domain II to interact with nucleic acid. Thus, oligomerization of RVBs may regulate its ability to bind nucleic acids, and conversely, nucleic acid binding might affect the ability of RVBs to form a double hexamer. The central channel in the ring widens from 15 Å for the RVB1 hexamer (large enough to accommodate single-stranded, but not double-stranded, DNA) to 25 Å for the RVB1 and RVB2 double hexamer (large enough to accommodate double-strand DNA) (Matias et al., 2006Matias P.M. Gorynia S. Donner P. Carrondo M.A. Crystal structure of the human AAA+ protein RuvBL1.J. Biol. Chem. 2006; 281: 38918-38929Crossref PubMed Scopus (117) Google Scholar, Puri et al., 2007Puri T. Wendler P. Sigala B. Saibil H. Tsaneva I.R. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex.J. Mol. Biol. 2007; 366: 179-192Crossref PubMed Scopus (72) Google Scholar, Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). As RVBs have conserved ATP binding and hydrolysis motifs and mutations within these motifs affect the viability of the organism (Jonsson et al., 2001Jonsson Z.O. Dhar S.K. Narlikar G.J. Auty R. Wagle N. Pellman D. Pratt R.E. Kingston R. Dutta A. Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes.J. Biol. Chem. 2001; 276: 16279-16288Crossref PubMed Scopus (95) Google Scholar), there have been a number of experiments performed to understand the importance and significance of nucleotide binding and hydrolysis. From the crystal structure of RVB1-ADP complex, it appears that ADP binds tightly between domains I of the adjacent subunits, with the Arg finger of one subunit positioned to interact with the ATP bound to the adjoining subunit (Matias et al., 2006Matias P.M. Gorynia S. Donner P. Carrondo M.A. Crystal structure of the human AAA+ protein RuvBL1.J. Biol. Chem. 2006; 281: 38918-38929Crossref PubMed Scopus (117) Google Scholar). Consistent with the importance of this intersubunit interaction, the RVB1 and RVB2 double hexamer or the RVB1 single hexamer have stronger ATPase activities than do monomers of RVB proteins. The tight fit between adjoining subunits and the presence of the capping domain III make access to the ATPase site difficult and thus affect the exchange of ADP for ATP. This may be responsible for the weak ATPase activity of RVB complexes and raises the possibility that cofactors may stimulate the ATPase activity of RVBs. Such stimulation has been reported for double-stranded DNA with a 5′ overhang (Gribun et al., 2008Gribun A. Cheung K.L. Huen J. Ortega J. Houry W.A. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex.J. Mol. Biol. 2008; 376: 1320-1333Crossref PubMed Scopus (69) Google Scholar). Because, however, RVB proteins are known to copurify with a bacterial ATPase that binds to single-stranded DNA (Puri et al., 2007Puri T. Wendler P. Sigala B. Saibil H. Tsaneva I.R. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex.J. Mol. Biol. 2007; 366: 179-192Crossref PubMed Scopus (72) Google Scholar), recombinant RVB with mutations in the Walker B motif should be tested in parallel experiments before concluding that RVB is the nucleic-acid-stimulated ATPase (Gribun et al., 2008Gribun A. Cheung K.L. Huen J. Ortega J. Houry W.A. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex.J. Mol. Biol. 2008; 376: 1320-1333Crossref PubMed Scopus (69) Google Scholar). Interestingly, changes in conformation of the RVB1 and RVB2 complex in EM images were observed after exposure to nucleotide (Figure 2D) (Gribun et al., 2008Gribun A. Cheung K.L. Huen J. Ortega J. Houry W.A. Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex.J. Mol. Biol. 2008; 376: 1320-1333Crossref PubMed Scopus (69) Google Scholar, Puri et al., 2007Puri T. Wendler P. Sigala B. Saibil H. Tsaneva I.R. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex.J. Mol. Biol. 2007; 366: 179-192Crossref PubMed Scopus (72) Google Scholar, Torreira et al., 2008Torreira E. Jha S. Lopez-Blanco J.R. Arias-Palomo E. Chacon P. Canas C. Ayora S. Dutta A. Llorca O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes.Structure. 2008; 16: 1511-1520Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). These changes are consistent with the idea that RVB proteins function as molecular motors that utilize the energy of ATP hydrolysis for their function. In summary, although RVB1 and RVB2 are very similar to each other and to other members of the AAA+ family at the sequence level, recent attempts at understanding the architecture of these proteins have identified several unique and distinctive features of RVBs. Transcription of genes requires chromatin-remodeling complexes to facilitate access to DNA (Ruthenburg et al., 2007Ruthenburg A.J. Li H. Patel D.J. Allis C.D. Multivalent engagement of chromatin modifications by linked binding modules.Nat. Rev. Mol. Cell Biol. 2007; 8: 983-994Crossref PubMed Scopus (778) Google Scholar). These complexes (Narlikar et al., 2002Narlikar G.J. Fan H.Y. Kingston R.E. Cooperation between complexes that regulate chromatin structure and transcription.Cell. 2002; 108: 475-487Abstract Full Text Full Text PDF PubMed Scopus (1208) Google Scholar) utilize the energy of ATP hydrolysis to mobilize nucleosomes or exchange histones from the DNA or covalently modify histones to change the chromatin state by recruiting proteins that recognize these modifications (reviewed in Ruthenburg et al., 2007Ruthenburg A.J. Li H. Patel D.J. Allis C.D. Multivalent engagement of chromatin modifications by linked binding modules.Nat. Rev. Mol. Cell Biol. 2007; 8: 983-994Crossref PubMed Scopus (778) Google Scholar). RVBs are present in these chromatin-remodeling complexes and regulate transcription. Ino80 is a multisubunit chromatin-remodeling complex originally identified in yeast (Figure 3). The Ino80 protein, a member of the Swi2/Snf2 superfamily, is the catalytically active subunit in this complex and is conserved within eukaryotes (Jin et al., 2005Jin J. Cai Y. Yao T. Gottschalk A.J. Florens L. Swanson S.K. Gutierrez J.L. Coleman M.K. Workman J.L. Mushegian A. et al.A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex.J. Biol. Chem. 2005; 280: 41207-41212Crossref PubMed Scopus (173) Google Scholar, Jonsson et al., 2004Jonsson Z.O. Jha S. Wohlschlegel J.A. Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex.Mol. Cell. 2004; 16: 465-477Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar, Shen et al., 2000Shen X. Mizuguchi G. Hamiche A. Wu C. A chromatin remodelling complex involved in transcription and DNA processing.Nature. 2000; 406: 541-544Crossref PubMed Scopus (627) Google Scholar; reviewed in Bao and Shen, 2007Bao Y. Shen X. INO80 subfamily of chromatin remodeling complexes.Mutat. Res. 2007; 618: 18-29Crossref PubMed Scopus (81) Google Scholar). The Ino80 complex has both RVB1 and RVB2 in a 6:1 stoichiometry relative to the other subunits, consistent with the double-hexameric structure of RVBs (Jonsson et al., 2004Jonsson Z.O. Jha S. Wohlschlegel J.A. Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex.Mol. Cell. 2004; 16: 465-477Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar). Although the Ino80 complex has been identified, purified, and characterized in both yeast and human and has similar nucleosome-stimulated ATPase activity and ATP-dependent chromatin-remodeling activity in vitro, there are some differences in the composition of the complex (Jin et al., 2005Jin J. Cai Y. Yao T. Gottschalk A.J. Florens L. Swanson S.K. Gutierrez J.L. Coleman M.K. Workman J.L. Mushegian A. et al.A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex.J. Biol. Chem. 2005; 280: 41207-41212Crossref PubMed Scopus (173) Google Scholar, Jonsson et al., 2004Jonsson Z.O. Jha S. Wohlschlegel J.A. Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex.Mol. Cell. 2004; 16: 465-477Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar, Shen et al., 2000Shen X. Mizuguchi G. Hamiche A. Wu C. A chromatin remodelling complex involved in transcription and DNA processing.Nature. 2000; 406: 541-544Crossref PubMed Scopus (627) Google Scholar) (Figure 3). The human Ino80 complex contains orthologs of yeast Ino80, RVB1, RVB2, Arp4, Arp5, Arp8, Ies2, and Ies6 (Jin et al., 2005Jin J. Cai Y. Yao T. Gottschalk A.J. Florens L. Swanson S.K. Gutierrez J.L. Coleman M.K. Workman J.L. Mushegian A. et al.A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex.J. Biol. Chem. 2005; 280: 41207-41212Crossref PubMed Scopus (173) Google Scholar). In addition, the b-ZIP domain-containing Amida protein, the forkhead-associated domain-containing MCRS1 protein, the NFRKB protein, and proteins encoded by the FLJ90652 and FLJ20309 ORFs are found only in the human Ino80 complex (Figure 3). The functional significance of the human-specific subunits is unclear (Jin et al., 2005Jin J. Cai Y. Yao T. Gottschalk A.J. Florens L. Swanson S.K. Gutierrez J.L. Coleman M.K. Workman J.L. Mushegian A. et al.A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex.J. Biol. Chem. 2005; 280: 41207-41212Crossref PubMed Scopus (173) Google Scholar). Subunits that are common and different between human and yeast Ino80 complex are shown. In yeast, both Ino80 and RVBs regulate transcription of a similar set of genes, and in vitro assays show that RVBs are essential for Ino80-dependent chromatin-remodeling activity, but not for the binding of Ino80 complex to the promoters (Jonsson et al., 2004Jonsson Z.O. Jha S. Wohlschlegel J.A. Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex.Mol. Cell. 2004; 16: 465-477Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar). However, binding of RVBs to the promoter could not be detected by chromatin immunoprecipitation assay (Jonsson et al., 2004Jonsson Z.O. Jha S. Wohlschlegel J.A. Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex.Mol. Cell. 2004; 16: 465-477Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar). The Ino80 complex purified in the absence of RVBs was depleted of an actin-like Arp5 subunit that is essential for the chromatin-remodeling activity (Jonsson et al., 2004Jonsson Z.O. Jha S. Wohlschlegel J.A. Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex.Mol. Cell. 2004; 16: 465-477Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar). In vitro association studies indicate that ATP-bound RVBs promote the assembly of Arp5 into the Ino80 complex. Collectively, these results suggest that the primary function of RVBs is to nucleate the association of Arp5 with the Ino80 complex in an ATP-dependent manner. Thus, RVBs are required for the proper assembly and function of the Ino80 complex, but we do not know yet whether this function is conserved in humans. Swr1 (SRCAP, mammalian homolog of Swr1) is also a Swi2/Snf2-related ATPase, and the Swr1 complex exhibits nucleosome-stimulated ATPase activity (Mizuguchi et al., 2004Mizuguchi G. Shen X. Landry J. Wu W.H. Sen S. Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex.Science. 2004; 303: 343-348Crossref PubMed Scopus (928) Google Scholar). The Swr1 complex is specifically involved in the loading of histone H2B-H2AZ dimers onto chromatin (Kobor et al., 2004Kobor M.S. Venkatasubrahmanyam S. Meneghini M.D. Gin J.W. Jennings J.L. Link A.J. Madhani H.D. Rine J. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin.PLoS Biol. 2004; 2: E131Crossref PubMed Scopus (444) Google Scholar, Krogan et al., 2003Krogan N.J. Keogh M.C. Datta N. Sawa C. Ryan O.W. Ding H. Haw R.A. Pootoolal J. Tong A. Canadien V. et al.A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1.Mol. Cell. 2003; 12: 1565-1576Abstract Full Text Full Text PDF PubMed Scopus (449) Google Scholar, Mizuguchi et al., 2004Mizuguchi G. Shen X. Landry J. Wu W.H. Sen S. Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex.Science. 2004; 303: 343-348Crossref PubMed Scopus (928) Google Scholar) to generate a structurally and functionally distinct chromatin region. Studies in various systems have implicated H2AZ in transcriptional activation, antagonizing gene silencing, and chromosome stability (reviewed in Raisner and Madhani, 2006Raisner R.M. Madhani H.D. Patterning chromatin: Form and function for H2A.Z variant nucleosomes.Curr. Opin. Genet. Dev. 2006; 16: 119-124Crossref PubMed Scopus (87) Google" @default.
- W2034207323 created "2016-06-24" @default.
- W2034207323 creator A5009877131 @default.
- W2034207323 creator A5040218340 @default.
- W2034207323 date "2009-06-01" @default.
- W2034207323 modified "2023-10-17" @default.
- W2034207323 title "RVB1/RVB2: Running Rings around Molecular Biology" @default.
- W2034207323 cites W1964186830 @default.
- W2034207323 cites W1964318436 @default.
- W2034207323 cites W1965254413 @default.
- W2034207323 cites W1965607297 @default.
- W2034207323 cites W1966197954 @default.
- W2034207323 cites W1968203528 @default.
- W2034207323 cites W1973269940 @default.
- W2034207323 cites W1974160989 @default.
- W2034207323 cites W1975289899 @default.
- W2034207323 cites W1975660840 @default.
- W2034207323 cites W1975757584 @default.
- W2034207323 cites W1975853332 @default.
- W2034207323 cites W1979187818 @default.
- W2034207323 cites W1980492780 @default.
- W2034207323 cites W1981045115 @default.
- W2034207323 cites W1982299793 @default.
- W2034207323 cites W1982545065 @default.
- W2034207323 cites W1982598635 @default.
- W2034207323 cites W1987020026 @default.
- W2034207323 cites W1989705133 @default.
- W2034207323 cites W1989993507 @default.
- W2034207323 cites W1990099078 @default.
- W2034207323 cites W1991995900 @default.
- W2034207323 cites W1994577866 @default.
- W2034207323 cites W1995569417 @default.
- W2034207323 cites W1995586000 @default.
- W2034207323 cites W2004054793 @default.
- W2034207323 cites W2004601589 @default.
- W2034207323 cites W2008686279 @default.
- W2034207323 cites W2010553023 @default.
- W2034207323 cites W2013429896 @default.
- W2034207323 cites W2013590529 @default.
- W2034207323 cites W2018507091 @default.
- W2034207323 cites W2022439334 @default.
- W2034207323 cites W2022523272 @default.
- W2034207323 cites W2022811243 @default.
- W2034207323 cites W2023256217 @default.
- W2034207323 cites W2023489445 @default.
- W2034207323 cites W2027630134 @default.
- W2034207323 cites W2029388127 @default.
- W2034207323 cites W2030019992 @default.
- W2034207323 cites W2033153127 @default.
- W2034207323 cites W2036477200 @default.
- W2034207323 cites W2038324148 @default.
- W2034207323 cites W2039564969 @default.
- W2034207323 cites W2039757117 @default.
- W2034207323 cites W2040416423 @default.
- W2034207323 cites W2047824377 @default.
- W2034207323 cites W2058368225 @default.
- W2034207323 cites W2062581862 @default.
- W2034207323 cites W2065623019 @default.
- W2034207323 cites W2070399051 @default.
- W2034207323 cites W2077338176 @default.
- W2034207323 cites W2080120619 @default.
- W2034207323 cites W2081099987 @default.
- W2034207323 cites W2081702399 @default.
- W2034207323 cites W2081985759 @default.
- W2034207323 cites W2084509375 @default.
- W2034207323 cites W2085340666 @default.
- W2034207323 cites W2090282678 @default.
- W2034207323 cites W2090438862 @default.
- W2034207323 cites W2094964650 @default.
- W2034207323 cites W2096480940 @default.
- W2034207323 cites W2101465904 @default.
- W2034207323 cites W2102604046 @default.
- W2034207323 cites W2102691929 @default.
- W2034207323 cites W2102752109 @default.
- W2034207323 cites W2102909532 @default.
- W2034207323 cites W2108566341 @default.
- W2034207323 cites W2109059475 @default.
- W2034207323 cites W2110817748 @default.
- W2034207323 cites W2111578933 @default.
- W2034207323 cites W2114353725 @default.
- W2034207323 cites W2120948678 @default.
- W2034207323 cites W2123636860 @default.
- W2034207323 cites W2128542570 @default.
- W2034207323 cites W2134476268 @default.
- W2034207323 cites W2136493185 @default.
- W2034207323 cites W2142460487 @default.
- W2034207323 cites W2150544249 @default.
- W2034207323 cites W2160255651 @default.
- W2034207323 cites W2161183329 @default.
- W2034207323 cites W2161355984 @default.
- W2034207323 cites W2161880719 @default.
- W2034207323 cites W2165361375 @default.
- W2034207323 cites W2169387751 @default.
- W2034207323 cites W2170396482 @default.
- W2034207323 cites W2267558770 @default.
- W2034207323 doi "https://doi.org/10.1016/j.molcel.2009.05.016" @default.
- W2034207323 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2733251" @default.
- W2034207323 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19524533" @default.