Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034230010> ?p ?o ?g. }
- W2034230010 endingPage "21" @default.
- W2034230010 startingPage "8" @default.
- W2034230010 abstract "In this paper, a theoretical link between mixture subclass discriminant analysis (MSDA) and a restricted Gaussian model is first presented. Then, two further discriminant analysis (DA) methods, i.e., fractional step MSDA (FSMSDA) and kernel MSDA (KMSDA) are proposed. Linking MSDA to an appropriate Gaussian model allows the derivation of a new DA method under the expectation maximization (EM) framework (EM-MSDA), which simultaneously derives the discriminant subspace and the maximum likelihood estimates. The two other proposed methods generalize MSDA in order to solve problems inherited from conventional DA. FSMSDA solves the subclass separation problem, that is, the situation in which the dimensionality of the discriminant subspace is strictly smaller than the rank of the inter-between-subclass scatter matrix. This is done by an appropriate weighting scheme and the utilization of an iterative algorithm for preserving useful discriminant directions. On the other hand, KMSDA uses the kernel trick to separate data with nonlinearly separable subclass structure. Extensive experimentation shows that the proposed methods outperform conventional MSDA and other linear discriminant analysis variants." @default.
- W2034230010 created "2016-06-24" @default.
- W2034230010 creator A5028031376 @default.
- W2034230010 creator A5055821226 @default.
- W2034230010 creator A5059096027 @default.
- W2034230010 creator A5059908683 @default.
- W2034230010 date "2013-01-01" @default.
- W2034230010 modified "2023-10-16" @default.
- W2034230010 title "Mixture Subclass Discriminant Analysis Link to Restricted Gaussian Model and Other Generalizations" @default.
- W2034230010 cites W1510147702 @default.
- W2034230010 cites W1540007258 @default.
- W2034230010 cites W1564947197 @default.
- W2034230010 cites W1963954178 @default.
- W2034230010 cites W1970748944 @default.
- W2034230010 cites W2006793117 @default.
- W2034230010 cites W2027717478 @default.
- W2034230010 cites W2042255949 @default.
- W2034230010 cites W2047737850 @default.
- W2034230010 cites W2084413241 @default.
- W2034230010 cites W2096779346 @default.
- W2034230010 cites W2098744119 @default.
- W2034230010 cites W2103560185 @default.
- W2034230010 cites W2105055468 @default.
- W2034230010 cites W2108995755 @default.
- W2034230010 cites W2109007328 @default.
- W2034230010 cites W2112074816 @default.
- W2034230010 cites W2117513046 @default.
- W2034230010 cites W2121647436 @default.
- W2034230010 cites W2123214816 @default.
- W2034230010 cites W2124161253 @default.
- W2034230010 cites W2125874614 @default.
- W2034230010 cites W2133185047 @default.
- W2034230010 cites W2137170986 @default.
- W2034230010 cites W2137611320 @default.
- W2034230010 cites W2140620930 @default.
- W2034230010 cites W2143304877 @default.
- W2034230010 cites W2144041638 @default.
- W2034230010 cites W2145268945 @default.
- W2034230010 cites W2145901830 @default.
- W2034230010 cites W2151543530 @default.
- W2034230010 cites W2152967416 @default.
- W2034230010 cites W2154952114 @default.
- W2034230010 cites W2154972179 @default.
- W2034230010 cites W2158114849 @default.
- W2034230010 cites W2164552042 @default.
- W2034230010 cites W2167999447 @default.
- W2034230010 cites W2169073444 @default.
- W2034230010 cites W2170285963 @default.
- W2034230010 cites W2171469056 @default.
- W2034230010 cites W2171972080 @default.
- W2034230010 cites W2488678869 @default.
- W2034230010 cites W2548880460 @default.
- W2034230010 cites W2028323735 @default.
- W2034230010 cites W2075568603 @default.
- W2034230010 doi "https://doi.org/10.1109/tnnls.2012.2216545" @default.
- W2034230010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24808203" @default.
- W2034230010 hasPublicationYear "2013" @default.
- W2034230010 type Work @default.
- W2034230010 sameAs 2034230010 @default.
- W2034230010 citedByCount "38" @default.
- W2034230010 countsByYear W20342300102013 @default.
- W2034230010 countsByYear W20342300102014 @default.
- W2034230010 countsByYear W20342300102015 @default.
- W2034230010 countsByYear W20342300102016 @default.
- W2034230010 countsByYear W20342300102017 @default.
- W2034230010 countsByYear W20342300102018 @default.
- W2034230010 countsByYear W20342300102019 @default.
- W2034230010 countsByYear W20342300102020 @default.
- W2034230010 countsByYear W20342300102022 @default.
- W2034230010 countsByYear W20342300102023 @default.
- W2034230010 crossrefType "journal-article" @default.
- W2034230010 hasAuthorship W2034230010A5028031376 @default.
- W2034230010 hasAuthorship W2034230010A5055821226 @default.
- W2034230010 hasAuthorship W2034230010A5059096027 @default.
- W2034230010 hasAuthorship W2034230010A5059908683 @default.
- W2034230010 hasBestOaLocation W20342300102 @default.
- W2034230010 hasConcept C104500394 @default.
- W2034230010 hasConcept C105795698 @default.
- W2034230010 hasConcept C114614502 @default.
- W2034230010 hasConcept C121332964 @default.
- W2034230010 hasConcept C126838900 @default.
- W2034230010 hasConcept C153180895 @default.
- W2034230010 hasConcept C154945302 @default.
- W2034230010 hasConcept C163716315 @default.
- W2034230010 hasConcept C181367576 @default.
- W2034230010 hasConcept C183115368 @default.
- W2034230010 hasConcept C27438332 @default.
- W2034230010 hasConcept C31510193 @default.
- W2034230010 hasConcept C32834561 @default.
- W2034230010 hasConcept C33923547 @default.
- W2034230010 hasConcept C41008148 @default.
- W2034230010 hasConcept C62520636 @default.
- W2034230010 hasConcept C69738355 @default.
- W2034230010 hasConcept C71924100 @default.
- W2034230010 hasConcept C74193536 @default.
- W2034230010 hasConcept C78397625 @default.
- W2034230010 hasConceptScore W2034230010C104500394 @default.
- W2034230010 hasConceptScore W2034230010C105795698 @default.