Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034240293> ?p ?o ?g. }
- W2034240293 abstract "Following the Weiss-Tabor-Carnevale approach [J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983)10.1063/1.525721; J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 25, 13 (1984).]10.1063/1.526009 designed for studying the integrability properties of nonlinear partial differential equations, we investigate the singularity structure of a (2+1)-dimensional wave-equation describing the propagation of polariton solitary waves in a ferromagnetic slab. As a result, we show that, out of any damping instability, the system above is integrable. Looking forward to unveiling its complete integrability, we derive its Bäcklund transformation and Hirota's bilinearization useful in generating a set of soliton solutions. In the wake of such results, using the arbitrary functions to enter into the Laurent series of solutions to the above system, we discuss some typical class of excitations generated from the previous solutions in account of a classification based upon the different expressions of a generic lower dimensional function. Accordingly, we unearth the nonlocal excitations of lowest amplitudes, the dromion and lump patterns of higher amplitudes, and finally the stochastic pattern formations of highest amplitudes, which arguably endow the aforementioned system with the fractal properties." @default.
- W2034240293 created "2016-06-24" @default.
- W2034240293 creator A5003773098 @default.
- W2034240293 creator A5024330785 @default.
- W2034240293 creator A5052519972 @default.
- W2034240293 date "2011-09-01" @default.
- W2034240293 modified "2023-10-18" @default.
- W2034240293 title "Fractal structure of ferromagnets: The singularity structure analysis" @default.
- W2034240293 cites W1965795366 @default.
- W2034240293 cites W1968387079 @default.
- W2034240293 cites W1969164483 @default.
- W2034240293 cites W1969522152 @default.
- W2034240293 cites W1969937738 @default.
- W2034240293 cites W1984514946 @default.
- W2034240293 cites W1989760690 @default.
- W2034240293 cites W1990879751 @default.
- W2034240293 cites W1994114994 @default.
- W2034240293 cites W2009137829 @default.
- W2034240293 cites W2010218197 @default.
- W2034240293 cites W2012371845 @default.
- W2034240293 cites W2014937216 @default.
- W2034240293 cites W2018364615 @default.
- W2034240293 cites W2019345070 @default.
- W2034240293 cites W2023037284 @default.
- W2034240293 cites W2025053962 @default.
- W2034240293 cites W2027248557 @default.
- W2034240293 cites W2028382979 @default.
- W2034240293 cites W2030665453 @default.
- W2034240293 cites W2030669316 @default.
- W2034240293 cites W2039524934 @default.
- W2034240293 cites W2041901052 @default.
- W2034240293 cites W2045598793 @default.
- W2034240293 cites W2048062417 @default.
- W2034240293 cites W2049687969 @default.
- W2034240293 cites W2050541166 @default.
- W2034240293 cites W2051012600 @default.
- W2034240293 cites W2051894523 @default.
- W2034240293 cites W2052142989 @default.
- W2034240293 cites W2054814058 @default.
- W2034240293 cites W2054988312 @default.
- W2034240293 cites W2056694452 @default.
- W2034240293 cites W2061060266 @default.
- W2034240293 cites W2073113881 @default.
- W2034240293 cites W2073571694 @default.
- W2034240293 cites W2076797207 @default.
- W2034240293 cites W2077193829 @default.
- W2034240293 cites W2078290799 @default.
- W2034240293 cites W2079011001 @default.
- W2034240293 cites W2080077906 @default.
- W2034240293 cites W2083332431 @default.
- W2034240293 cites W2086471182 @default.
- W2034240293 cites W2086931259 @default.
- W2034240293 cites W2091322306 @default.
- W2034240293 cites W2093735859 @default.
- W2034240293 cites W2095669631 @default.
- W2034240293 cites W2109997155 @default.
- W2034240293 cites W2115600080 @default.
- W2034240293 cites W2144918290 @default.
- W2034240293 cites W2338343474 @default.
- W2034240293 cites W2403069350 @default.
- W2034240293 cites W4256339210 @default.
- W2034240293 doi "https://doi.org/10.1063/1.3641824" @default.
- W2034240293 hasPublicationYear "2011" @default.
- W2034240293 type Work @default.
- W2034240293 sameAs 2034240293 @default.
- W2034240293 citedByCount "9" @default.
- W2034240293 countsByYear W20342402932014 @default.
- W2034240293 countsByYear W20342402932019 @default.
- W2034240293 countsByYear W20342402932021 @default.
- W2034240293 countsByYear W20342402932022 @default.
- W2034240293 countsByYear W20342402932023 @default.
- W2034240293 crossrefType "journal-article" @default.
- W2034240293 hasAuthorship W2034240293A5003773098 @default.
- W2034240293 hasAuthorship W2034240293A5024330785 @default.
- W2034240293 hasAuthorship W2034240293A5052519972 @default.
- W2034240293 hasConcept C121332964 @default.
- W2034240293 hasConcept C134306372 @default.
- W2034240293 hasConcept C158622935 @default.
- W2034240293 hasConcept C16171025 @default.
- W2034240293 hasConcept C180205008 @default.
- W2034240293 hasConcept C184311908 @default.
- W2034240293 hasConcept C200741047 @default.
- W2034240293 hasConcept C33923547 @default.
- W2034240293 hasConcept C37914503 @default.
- W2034240293 hasConcept C40636538 @default.
- W2034240293 hasConcept C62520636 @default.
- W2034240293 hasConcept C87651913 @default.
- W2034240293 hasConcept C93779851 @default.
- W2034240293 hasConceptScore W2034240293C121332964 @default.
- W2034240293 hasConceptScore W2034240293C134306372 @default.
- W2034240293 hasConceptScore W2034240293C158622935 @default.
- W2034240293 hasConceptScore W2034240293C16171025 @default.
- W2034240293 hasConceptScore W2034240293C180205008 @default.
- W2034240293 hasConceptScore W2034240293C184311908 @default.
- W2034240293 hasConceptScore W2034240293C200741047 @default.
- W2034240293 hasConceptScore W2034240293C33923547 @default.
- W2034240293 hasConceptScore W2034240293C37914503 @default.
- W2034240293 hasConceptScore W2034240293C40636538 @default.
- W2034240293 hasConceptScore W2034240293C62520636 @default.
- W2034240293 hasConceptScore W2034240293C87651913 @default.