Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034267178> ?p ?o ?g. }
- W2034267178 endingPage "e36670" @default.
- W2034267178 startingPage "e36670" @default.
- W2034267178 abstract "Background The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. Main Contributions We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable – allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used." @default.
- W2034267178 created "2016-06-24" @default.
- W2034267178 creator A5025123281 @default.
- W2034267178 creator A5042230025 @default.
- W2034267178 date "2012-05-22" @default.
- W2034267178 modified "2023-10-15" @default.
- W2034267178 title "Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States" @default.
- W2034267178 cites W1598036770 @default.
- W2034267178 cites W1964652818 @default.
- W2034267178 cites W1965762557 @default.
- W2034267178 cites W1984452717 @default.
- W2034267178 cites W1985940938 @default.
- W2034267178 cites W1989585015 @default.
- W2034267178 cites W1992539915 @default.
- W2034267178 cites W1998794714 @default.
- W2034267178 cites W1998859007 @default.
- W2034267178 cites W2000813523 @default.
- W2034267178 cites W2003277232 @default.
- W2034267178 cites W2010690165 @default.
- W2034267178 cites W2012082631 @default.
- W2034267178 cites W2014549778 @default.
- W2034267178 cites W2019484205 @default.
- W2034267178 cites W2023004141 @default.
- W2034267178 cites W2024060531 @default.
- W2034267178 cites W2030575739 @default.
- W2034267178 cites W2033905848 @default.
- W2034267178 cites W2041176801 @default.
- W2034267178 cites W2046451925 @default.
- W2034267178 cites W2054430476 @default.
- W2034267178 cites W2057833549 @default.
- W2034267178 cites W2060505504 @default.
- W2034267178 cites W2060755243 @default.
- W2034267178 cites W2070159194 @default.
- W2034267178 cites W2074401358 @default.
- W2034267178 cites W2079166245 @default.
- W2034267178 cites W2081033522 @default.
- W2034267178 cites W2081500927 @default.
- W2034267178 cites W2085498070 @default.
- W2034267178 cites W2088155512 @default.
- W2034267178 cites W2119127509 @default.
- W2034267178 cites W2124398758 @default.
- W2034267178 cites W2130302656 @default.
- W2034267178 cites W2131215403 @default.
- W2034267178 cites W2131853501 @default.
- W2034267178 cites W2139852988 @default.
- W2034267178 cites W2141969391 @default.
- W2034267178 cites W2149618862 @default.
- W2034267178 cites W2153756550 @default.
- W2034267178 cites W2155418451 @default.
- W2034267178 cites W2159380625 @default.
- W2034267178 cites W2159466574 @default.
- W2034267178 cites W2167154952 @default.
- W2034267178 cites W2195816025 @default.
- W2034267178 cites W2615152173 @default.
- W2034267178 cites W4238591275 @default.
- W2034267178 cites W4247849388 @default.
- W2034267178 doi "https://doi.org/10.1371/journal.pone.0036670" @default.
- W2034267178 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3358312" @default.
- W2034267178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22629320" @default.
- W2034267178 hasPublicationYear "2012" @default.
- W2034267178 type Work @default.
- W2034267178 sameAs 2034267178 @default.
- W2034267178 citedByCount "32" @default.
- W2034267178 countsByYear W20342671782013 @default.
- W2034267178 countsByYear W20342671782014 @default.
- W2034267178 countsByYear W20342671782015 @default.
- W2034267178 countsByYear W20342671782016 @default.
- W2034267178 countsByYear W20342671782017 @default.
- W2034267178 countsByYear W20342671782018 @default.
- W2034267178 countsByYear W20342671782019 @default.
- W2034267178 countsByYear W20342671782020 @default.
- W2034267178 countsByYear W20342671782021 @default.
- W2034267178 countsByYear W20342671782023 @default.
- W2034267178 crossrefType "journal-article" @default.
- W2034267178 hasAuthorship W2034267178A5025123281 @default.
- W2034267178 hasAuthorship W2034267178A5042230025 @default.
- W2034267178 hasBestOaLocation W20342671781 @default.
- W2034267178 hasConcept C11413529 @default.
- W2034267178 hasConcept C115961682 @default.
- W2034267178 hasConcept C119857082 @default.
- W2034267178 hasConcept C121332964 @default.
- W2034267178 hasConcept C121864883 @default.
- W2034267178 hasConcept C151730666 @default.
- W2034267178 hasConcept C154945302 @default.
- W2034267178 hasConcept C194544171 @default.
- W2034267178 hasConcept C26517878 @default.
- W2034267178 hasConcept C2779343474 @default.
- W2034267178 hasConcept C28826006 @default.
- W2034267178 hasConcept C33923547 @default.
- W2034267178 hasConcept C38652104 @default.
- W2034267178 hasConcept C41008148 @default.
- W2034267178 hasConcept C42407357 @default.
- W2034267178 hasConcept C51955184 @default.
- W2034267178 hasConcept C55479107 @default.
- W2034267178 hasConcept C86803240 @default.
- W2034267178 hasConcept C98763669 @default.
- W2034267178 hasConcept C99498987 @default.
- W2034267178 hasConceptScore W2034267178C11413529 @default.