Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034280206> ?p ?o ?g. }
- W2034280206 endingPage "1916" @default.
- W2034280206 startingPage "1904" @default.
- W2034280206 abstract "Purpose : The problem of metal artifact reduction (MAR) is almost as old as the clinical use of computed tomography itself. When metal implants are present in the field of measurement, severe artifacts degrade the image quality and the diagnostic value of CT images. Up to now, no generally accepted solution to this issue has been found. In this work, a method based on a new MAR concept is presented: frequency split metal artifact reduction (FSMAR). It ensures efficient reduction of metal artifacts at high image quality with enhanced preservation of details close to metal implants. Methods : FSMAR combines a raw data inpainting‐based MAR method with an image‐based frequency split approach. Many typical methods for metal artifact reduction are inpainting‐based MAR methods and simply replace unreliable parts of the projection data, for example, by linear interpolation. Frequency split approaches were used in CT, for example, by combining two reconstruction methods in order to reduce cone‐beam artifacts. FSMAR combines the high frequencies of an uncorrected image, where all available data were used for the reconstruction with the more reliable low frequencies of an image which was corrected with an inpainting‐based MAR method. The algorithm is tested in combination with normalized metal artifact reduction (NMAR) and with a standard inpainting‐based MAR approach. NMAR is a more sophisticated inpainting‐based MAR method, which introduces less new artifacts which may result from interpolation errors. A quantitative evaluation was performed using the examples of a simulation of the XCAT phantom and a scan of a spine phantom. Further evaluation includes patients with different types of metal implants: hip prostheses, dental fillings, neurocoil, and spine fixation, which were scanned with a modern clinical dual source CT scanner. Results : FSMAR ensures sharp edges and a preservation of anatomical details which is in many cases better than after applying an inpainting‐based MAR method only. In contrast to other MAR methods, FSMAR yields images without the usual blurring close to implants. Conclusions : FSMAR should be used together with NMAR, a combination which ensures an accurate correction of both high and low frequencies. The algorithm is computationally inexpensive compared to iterative methods and methods with complex inpainting schemes. No parameters were chosen manually; it is ready for an application in clinical routine." @default.
- W2034280206 created "2016-06-24" @default.
- W2034280206 creator A5019247249 @default.
- W2034280206 creator A5082428769 @default.
- W2034280206 creator A5085019142 @default.
- W2034280206 creator A5089472381 @default.
- W2034280206 creator A5091816459 @default.
- W2034280206 date "2012-03-16" @default.
- W2034280206 modified "2023-10-12" @default.
- W2034280206 title "Frequency split metal artifact reduction (FSMAR) in computed tomography" @default.
- W2034280206 cites W1987289672 @default.
- W2034280206 cites W1992213467 @default.
- W2034280206 cites W1992705935 @default.
- W2034280206 cites W1996992165 @default.
- W2034280206 cites W2001169653 @default.
- W2034280206 cites W2005097727 @default.
- W2034280206 cites W2019559044 @default.
- W2034280206 cites W2023160828 @default.
- W2034280206 cites W2025995141 @default.
- W2034280206 cites W2042580235 @default.
- W2034280206 cites W2053029395 @default.
- W2034280206 cites W2065720709 @default.
- W2034280206 cites W2070187752 @default.
- W2034280206 cites W2071099763 @default.
- W2034280206 cites W2078610757 @default.
- W2034280206 cites W2079127706 @default.
- W2034280206 cites W2088596249 @default.
- W2034280206 cites W2095757123 @default.
- W2034280206 cites W2102880704 @default.
- W2034280206 cites W2119468597 @default.
- W2034280206 cites W2128930532 @default.
- W2034280206 cites W2154129661 @default.
- W2034280206 cites W2154280873 @default.
- W2034280206 cites W2157833176 @default.
- W2034280206 cites W2157892645 @default.
- W2034280206 cites W2539811132 @default.
- W2034280206 cites W2540361094 @default.
- W2034280206 cites W2550709186 @default.
- W2034280206 doi "https://doi.org/10.1118/1.3691902" @default.
- W2034280206 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22482612" @default.
- W2034280206 hasPublicationYear "2012" @default.
- W2034280206 type Work @default.
- W2034280206 sameAs 2034280206 @default.
- W2034280206 citedByCount "203" @default.
- W2034280206 countsByYear W20342802062012 @default.
- W2034280206 countsByYear W20342802062013 @default.
- W2034280206 countsByYear W20342802062014 @default.
- W2034280206 countsByYear W20342802062015 @default.
- W2034280206 countsByYear W20342802062016 @default.
- W2034280206 countsByYear W20342802062017 @default.
- W2034280206 countsByYear W20342802062018 @default.
- W2034280206 countsByYear W20342802062019 @default.
- W2034280206 countsByYear W20342802062020 @default.
- W2034280206 countsByYear W20342802062021 @default.
- W2034280206 countsByYear W20342802062022 @default.
- W2034280206 countsByYear W20342802062023 @default.
- W2034280206 crossrefType "journal-article" @default.
- W2034280206 hasAuthorship W2034280206A5019247249 @default.
- W2034280206 hasAuthorship W2034280206A5082428769 @default.
- W2034280206 hasAuthorship W2034280206A5085019142 @default.
- W2034280206 hasAuthorship W2034280206A5089472381 @default.
- W2034280206 hasAuthorship W2034280206A5091816459 @default.
- W2034280206 hasConcept C104293457 @default.
- W2034280206 hasConcept C111335779 @default.
- W2034280206 hasConcept C11413529 @default.
- W2034280206 hasConcept C115961682 @default.
- W2034280206 hasConcept C11727466 @default.
- W2034280206 hasConcept C137800194 @default.
- W2034280206 hasConcept C141379421 @default.
- W2034280206 hasConcept C153180895 @default.
- W2034280206 hasConcept C154945302 @default.
- W2034280206 hasConcept C171836373 @default.
- W2034280206 hasConcept C2524010 @default.
- W2034280206 hasConcept C2779010991 @default.
- W2034280206 hasConcept C2989005 @default.
- W2034280206 hasConcept C31972630 @default.
- W2034280206 hasConcept C33923547 @default.
- W2034280206 hasConcept C41008148 @default.
- W2034280206 hasConcept C55020928 @default.
- W2034280206 hasConcept C57493831 @default.
- W2034280206 hasConcept C71924100 @default.
- W2034280206 hasConceptScore W2034280206C104293457 @default.
- W2034280206 hasConceptScore W2034280206C111335779 @default.
- W2034280206 hasConceptScore W2034280206C11413529 @default.
- W2034280206 hasConceptScore W2034280206C115961682 @default.
- W2034280206 hasConceptScore W2034280206C11727466 @default.
- W2034280206 hasConceptScore W2034280206C137800194 @default.
- W2034280206 hasConceptScore W2034280206C141379421 @default.
- W2034280206 hasConceptScore W2034280206C153180895 @default.
- W2034280206 hasConceptScore W2034280206C154945302 @default.
- W2034280206 hasConceptScore W2034280206C171836373 @default.
- W2034280206 hasConceptScore W2034280206C2524010 @default.
- W2034280206 hasConceptScore W2034280206C2779010991 @default.
- W2034280206 hasConceptScore W2034280206C2989005 @default.
- W2034280206 hasConceptScore W2034280206C31972630 @default.
- W2034280206 hasConceptScore W2034280206C33923547 @default.
- W2034280206 hasConceptScore W2034280206C41008148 @default.
- W2034280206 hasConceptScore W2034280206C55020928 @default.