Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034306613> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2034306613 abstract "Research in machine learning and data mining acknowledges more and more the fact that most data occurring in real world problems is inherently structured. Graphs and particular subclasses of graphs are commonly used representations for such structured data. They are present in important application areas ranging from biology and chemistry to the World Wide Web and beyond. Following the ever increasing number of successful workshops on topics like mining and learning with graphs and motivated by the ever increasing amount of high quality submissions to these workshops, this special issue gathers some of the progress in the field over the recent years. One of the major trends has been to investigate how the success of kernel methods on data which is readily embedded in a Euclidean space, can be carried over to structured data. In this spirit, the paper “Graph kernels based on tree patterns for molecules” by Pierre Mahe and Jean-Philippe Vert investigates kernel functions based on co-occurrence of particular subtree patterns in graphs. They extend and use these kernels for toxicity and anti-cancer activity prediction with support vector machines on graphs representing the 2D structure of molecules. The paper “On the properties of von Neumann kernels for link analysis” by Masashi Shimbo, Takahiko Ito, Daichi Mochihashi, and Yuji Matsumoto investigates the relationship between link analysis measures and kernel functions defined on the vertices of a single huge graph. Having identified common issues of both these kernels and these link analysis measures, the authors proceed by proposing a modified kernel and demonstrate its effectiveness by analysing a citation network of scientific papers." @default.
- W2034306613 created "2016-06-24" @default.
- W2034306613 creator A5025793777 @default.
- W2034306613 creator A5038111167 @default.
- W2034306613 date "2009-01-17" @default.
- W2034306613 modified "2023-09-26" @default.
- W2034306613 title "Guest editors’ introduction: special issue on mining and learning with graphs" @default.
- W2034306613 doi "https://doi.org/10.1007/s10994-009-5105-y" @default.
- W2034306613 hasPublicationYear "2009" @default.
- W2034306613 type Work @default.
- W2034306613 sameAs 2034306613 @default.
- W2034306613 citedByCount "4" @default.
- W2034306613 countsByYear W20343066132013 @default.
- W2034306613 countsByYear W20343066132014 @default.
- W2034306613 countsByYear W20343066132015 @default.
- W2034306613 crossrefType "journal-article" @default.
- W2034306613 hasAuthorship W2034306613A5025793777 @default.
- W2034306613 hasAuthorship W2034306613A5038111167 @default.
- W2034306613 hasBestOaLocation W20343066131 @default.
- W2034306613 hasConcept C100595998 @default.
- W2034306613 hasConcept C114614502 @default.
- W2034306613 hasConcept C118615104 @default.
- W2034306613 hasConcept C119857082 @default.
- W2034306613 hasConcept C122280245 @default.
- W2034306613 hasConcept C12267149 @default.
- W2034306613 hasConcept C124101348 @default.
- W2034306613 hasConcept C132525143 @default.
- W2034306613 hasConcept C154945302 @default.
- W2034306613 hasConcept C160446489 @default.
- W2034306613 hasConcept C186450821 @default.
- W2034306613 hasConcept C2522767166 @default.
- W2034306613 hasConcept C33923547 @default.
- W2034306613 hasConcept C41008148 @default.
- W2034306613 hasConcept C74193536 @default.
- W2034306613 hasConcept C80444323 @default.
- W2034306613 hasConceptScore W2034306613C100595998 @default.
- W2034306613 hasConceptScore W2034306613C114614502 @default.
- W2034306613 hasConceptScore W2034306613C118615104 @default.
- W2034306613 hasConceptScore W2034306613C119857082 @default.
- W2034306613 hasConceptScore W2034306613C122280245 @default.
- W2034306613 hasConceptScore W2034306613C12267149 @default.
- W2034306613 hasConceptScore W2034306613C124101348 @default.
- W2034306613 hasConceptScore W2034306613C132525143 @default.
- W2034306613 hasConceptScore W2034306613C154945302 @default.
- W2034306613 hasConceptScore W2034306613C160446489 @default.
- W2034306613 hasConceptScore W2034306613C186450821 @default.
- W2034306613 hasConceptScore W2034306613C2522767166 @default.
- W2034306613 hasConceptScore W2034306613C33923547 @default.
- W2034306613 hasConceptScore W2034306613C41008148 @default.
- W2034306613 hasConceptScore W2034306613C74193536 @default.
- W2034306613 hasConceptScore W2034306613C80444323 @default.
- W2034306613 hasLocation W20343066131 @default.
- W2034306613 hasOpenAccess W2034306613 @default.
- W2034306613 hasPrimaryLocation W20343066131 @default.
- W2034306613 hasRelatedWork W125961167 @default.
- W2034306613 hasRelatedWork W1523947686 @default.
- W2034306613 hasRelatedWork W1546693390 @default.
- W2034306613 hasRelatedWork W1583318653 @default.
- W2034306613 hasRelatedWork W1589642822 @default.
- W2034306613 hasRelatedWork W1606626938 @default.
- W2034306613 hasRelatedWork W1988396645 @default.
- W2034306613 hasRelatedWork W2008535992 @default.
- W2034306613 hasRelatedWork W2035604484 @default.
- W2034306613 hasRelatedWork W2230462707 @default.
- W2034306613 hasRelatedWork W2295780336 @default.
- W2034306613 hasRelatedWork W2380260687 @default.
- W2034306613 hasRelatedWork W2732897299 @default.
- W2034306613 hasRelatedWork W2747734991 @default.
- W2034306613 hasRelatedWork W2900786670 @default.
- W2034306613 hasRelatedWork W2913383912 @default.
- W2034306613 hasRelatedWork W2942850153 @default.
- W2034306613 hasRelatedWork W2949224886 @default.
- W2034306613 hasRelatedWork W3174222656 @default.
- W2034306613 hasRelatedWork W3209927820 @default.
- W2034306613 isParatext "false" @default.
- W2034306613 isRetracted "false" @default.
- W2034306613 magId "2034306613" @default.
- W2034306613 workType "article" @default.