Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034308888> ?p ?o ?g. }
- W2034308888 endingPage "21" @default.
- W2034308888 startingPage "21" @default.
- W2034308888 abstract "The models in this article generalize current models for both correlation networks and multigraph networks. Correlation networks are widely applied in genomics research. In contrast to general networks, it is straightforward to test the statistical significance of an edge in a correlation network. It is also easy to decompose the underlying correlation matrix and generate informative network statistics such as the module eigenvector. However, correlation networks only capture the connections between numeric variables. An open question is whether one can find suitable decompositions of the similarity measures employed in constructing general networks. Multigraph networks are attractive because they support likelihood based inference. Unfortunately, it is unclear how to adjust current statistical methods to detect the clusters inherent in many data sets. Here we present an intuitive and parsimonious parametrization of a general similarity measure such as a network adjacency matrix. The cluster and propensity based approximation (CPBA) of a network not only generalizes correlation network methods but also multigraph methods. In particular, it gives rise to a novel and more realistic multigraph model that accounts for clustering and provides likelihood based tests for assessing the significance of an edge after controlling for clustering. We present a novel Majorization-Minimization (MM) algorithm for estimating the parameters of the CPBA. To illustrate the practical utility of the CPBA of a network, we apply it to gene expression data and to a bi-partite network model for diseases and disease genes from the Online Mendelian Inheritance in Man (OMIM). The CPBA of a network is theoretically appealing since a) it generalizes correlation and multigraph network methods, b) it improves likelihood based significance tests for edge counts, c) it directly models higher-order relationships between clusters, and d) it suggests novel clustering algorithms. The CPBA of a network is implemented in Fortran 95 and bundled in the freely available R package PropClust." @default.
- W2034308888 created "2016-06-24" @default.
- W2034308888 creator A5000192581 @default.
- W2034308888 creator A5008135470 @default.
- W2034308888 creator A5045820604 @default.
- W2034308888 creator A5070269135 @default.
- W2034308888 date "2013-01-01" @default.
- W2034308888 modified "2023-10-05" @default.
- W2034308888 title "Cluster and propensity based approximation of a network" @default.
- W2034308888 cites W1639696487 @default.
- W2034308888 cites W1964305071 @default.
- W2034308888 cites W1965055200 @default.
- W2034308888 cites W1966327575 @default.
- W2034308888 cites W1968055555 @default.
- W2034308888 cites W2008620264 @default.
- W2034308888 cites W2018747370 @default.
- W2034308888 cites W2032516423 @default.
- W2034308888 cites W2057498577 @default.
- W2034308888 cites W2068229930 @default.
- W2034308888 cites W2069733150 @default.
- W2034308888 cites W2076007362 @default.
- W2034308888 cites W2081837126 @default.
- W2034308888 cites W2083045667 @default.
- W2034308888 cites W2101181377 @default.
- W2034308888 cites W2112090702 @default.
- W2034308888 cites W2112204472 @default.
- W2034308888 cites W2116961371 @default.
- W2034308888 cites W2118636185 @default.
- W2034308888 cites W2120135466 @default.
- W2034308888 cites W2139818818 @default.
- W2034308888 cites W2148556302 @default.
- W2034308888 cites W2150926065 @default.
- W2034308888 cites W2151820055 @default.
- W2034308888 cites W2151936673 @default.
- W2034308888 cites W2162142896 @default.
- W2034308888 cites W2164727176 @default.
- W2034308888 cites W2171030481 @default.
- W2034308888 doi "https://doi.org/10.1186/1752-0509-7-21" @default.
- W2034308888 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3663730" @default.
- W2034308888 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23497424" @default.
- W2034308888 hasPublicationYear "2013" @default.
- W2034308888 type Work @default.
- W2034308888 sameAs 2034308888 @default.
- W2034308888 citedByCount "6" @default.
- W2034308888 countsByYear W20343088882014 @default.
- W2034308888 countsByYear W20343088882015 @default.
- W2034308888 countsByYear W20343088882017 @default.
- W2034308888 countsByYear W20343088882020 @default.
- W2034308888 crossrefType "journal-article" @default.
- W2034308888 hasAuthorship W2034308888A5000192581 @default.
- W2034308888 hasAuthorship W2034308888A5008135470 @default.
- W2034308888 hasAuthorship W2034308888A5045820604 @default.
- W2034308888 hasAuthorship W2034308888A5070269135 @default.
- W2034308888 hasBestOaLocation W20343088881 @default.
- W2034308888 hasConcept C103278499 @default.
- W2034308888 hasConcept C115961682 @default.
- W2034308888 hasConcept C119857082 @default.
- W2034308888 hasConcept C121332964 @default.
- W2034308888 hasConcept C124101348 @default.
- W2034308888 hasConcept C132525143 @default.
- W2034308888 hasConcept C154945302 @default.
- W2034308888 hasConcept C17758045 @default.
- W2034308888 hasConcept C180356752 @default.
- W2034308888 hasConcept C2776214188 @default.
- W2034308888 hasConcept C32946077 @default.
- W2034308888 hasConcept C41008148 @default.
- W2034308888 hasConcept C62520636 @default.
- W2034308888 hasConcept C73555534 @default.
- W2034308888 hasConcept C80444323 @default.
- W2034308888 hasConceptScore W2034308888C103278499 @default.
- W2034308888 hasConceptScore W2034308888C115961682 @default.
- W2034308888 hasConceptScore W2034308888C119857082 @default.
- W2034308888 hasConceptScore W2034308888C121332964 @default.
- W2034308888 hasConceptScore W2034308888C124101348 @default.
- W2034308888 hasConceptScore W2034308888C132525143 @default.
- W2034308888 hasConceptScore W2034308888C154945302 @default.
- W2034308888 hasConceptScore W2034308888C17758045 @default.
- W2034308888 hasConceptScore W2034308888C180356752 @default.
- W2034308888 hasConceptScore W2034308888C2776214188 @default.
- W2034308888 hasConceptScore W2034308888C32946077 @default.
- W2034308888 hasConceptScore W2034308888C41008148 @default.
- W2034308888 hasConceptScore W2034308888C62520636 @default.
- W2034308888 hasConceptScore W2034308888C73555534 @default.
- W2034308888 hasConceptScore W2034308888C80444323 @default.
- W2034308888 hasIssue "1" @default.
- W2034308888 hasLocation W20343088881 @default.
- W2034308888 hasLocation W20343088882 @default.
- W2034308888 hasLocation W20343088883 @default.
- W2034308888 hasLocation W20343088884 @default.
- W2034308888 hasLocation W20343088885 @default.
- W2034308888 hasOpenAccess W2034308888 @default.
- W2034308888 hasPrimaryLocation W20343088881 @default.
- W2034308888 hasRelatedWork W2586802271 @default.
- W2034308888 hasRelatedWork W2762277149 @default.
- W2034308888 hasRelatedWork W2961085424 @default.
- W2034308888 hasRelatedWork W3008248018 @default.
- W2034308888 hasRelatedWork W3046775127 @default.
- W2034308888 hasRelatedWork W4285260836 @default.