Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034311206> ?p ?o ?g. }
- W2034311206 endingPage "52" @default.
- W2034311206 startingPage "42" @default.
- W2034311206 abstract "The use of adaptive connectors as conjunction operators in adaptive fuzzy inference systems is one of the methodologies, also compatible with others, to improve the accuracy of fuzzy rule-based systems by means of local adaptation of the inference process to each rule of the rule base. However, when dealing with such currently challenging issues as high-dimensional regression problems, adapting their parameters becomes difficult due to the exponential rule explosion. In this paper, we propose to address the problem by using a new adaptive conjunction operator. This operator provides considerable advantages in efficiency while maintaining the accuracy. Moreover, it is completed with a multi-objective evolutionary algorithm as a search method due to its efficiency in achieving different balances between complexity and accuracy in the learned fuzzy systems. An in-depth experimental study is performed to show the advantages of the proposal presented, using 17 regression problems of different size and complexity, using different rule bases, analyzing the multi-objective algorithms and Pareto fronts obtained and performing statistical analyses. It confirms its effectiveness in terms of efficiency, but also in terms of accuracy and complexity of the obtained models." @default.
- W2034311206 created "2016-06-24" @default.
- W2034311206 creator A5045457366 @default.
- W2034311206 creator A5058163128 @default.
- W2034311206 creator A5085526184 @default.
- W2034311206 creator A5086156304 @default.
- W2034311206 date "2013-12-01" @default.
- W2034311206 modified "2023-09-27" @default.
- W2034311206 title "An efficient adaptive fuzzy inference system for complex and high dimensional regression problems in linguistic fuzzy modelling" @default.
- W2034311206 cites W120605170 @default.
- W2034311206 cites W1514048016 @default.
- W2034311206 cites W1977904727 @default.
- W2034311206 cites W1996991494 @default.
- W2034311206 cites W1998510407 @default.
- W2034311206 cites W1998661555 @default.
- W2034311206 cites W2012451526 @default.
- W2034311206 cites W2012515393 @default.
- W2034311206 cites W2017812666 @default.
- W2034311206 cites W2022421417 @default.
- W2034311206 cites W2023893330 @default.
- W2034311206 cites W2031760375 @default.
- W2034311206 cites W2036893104 @default.
- W2034311206 cites W2042551229 @default.
- W2034311206 cites W2049736842 @default.
- W2034311206 cites W2050288270 @default.
- W2034311206 cites W2052107565 @default.
- W2034311206 cites W2063556121 @default.
- W2034311206 cites W2068883966 @default.
- W2034311206 cites W2075087150 @default.
- W2034311206 cites W2078572874 @default.
- W2034311206 cites W2086762822 @default.
- W2034311206 cites W2088653991 @default.
- W2034311206 cites W2092380769 @default.
- W2034311206 cites W2093620744 @default.
- W2034311206 cites W2106770680 @default.
- W2034311206 cites W2117404144 @default.
- W2034311206 cites W2119893066 @default.
- W2034311206 cites W2121573754 @default.
- W2034311206 cites W2122702721 @default.
- W2034311206 cites W2125899728 @default.
- W2034311206 cites W2126105956 @default.
- W2034311206 cites W2127356261 @default.
- W2034311206 cites W2129880717 @default.
- W2034311206 cites W2132037635 @default.
- W2034311206 cites W2146012658 @default.
- W2034311206 cites W2146713522 @default.
- W2034311206 cites W2149046735 @default.
- W2034311206 cites W2156321660 @default.
- W2034311206 cites W2158325524 @default.
- W2034311206 cites W2160947835 @default.
- W2034311206 cites W2163737009 @default.
- W2034311206 cites W2165466912 @default.
- W2034311206 cites W2165643853 @default.
- W2034311206 cites W2166039800 @default.
- W2034311206 cites W265079 @default.
- W2034311206 cites W4241727697 @default.
- W2034311206 doi "https://doi.org/10.1016/j.knosys.2013.05.012" @default.
- W2034311206 hasPublicationYear "2013" @default.
- W2034311206 type Work @default.
- W2034311206 sameAs 2034311206 @default.
- W2034311206 citedByCount "16" @default.
- W2034311206 countsByYear W20343112062014 @default.
- W2034311206 countsByYear W20343112062015 @default.
- W2034311206 countsByYear W20343112062016 @default.
- W2034311206 countsByYear W20343112062017 @default.
- W2034311206 countsByYear W20343112062018 @default.
- W2034311206 countsByYear W20343112062019 @default.
- W2034311206 countsByYear W20343112062022 @default.
- W2034311206 countsByYear W20343112062023 @default.
- W2034311206 crossrefType "journal-article" @default.
- W2034311206 hasAuthorship W2034311206A5045457366 @default.
- W2034311206 hasAuthorship W2034311206A5058163128 @default.
- W2034311206 hasAuthorship W2034311206A5085526184 @default.
- W2034311206 hasAuthorship W2034311206A5086156304 @default.
- W2034311206 hasConcept C104317684 @default.
- W2034311206 hasConcept C119857082 @default.
- W2034311206 hasConcept C124101348 @default.
- W2034311206 hasConcept C126255220 @default.
- W2034311206 hasConcept C154945302 @default.
- W2034311206 hasConcept C158448853 @default.
- W2034311206 hasConcept C17020691 @default.
- W2034311206 hasConcept C185592680 @default.
- W2034311206 hasConcept C186108316 @default.
- W2034311206 hasConcept C195975749 @default.
- W2034311206 hasConcept C2776214188 @default.
- W2034311206 hasConcept C2780049643 @default.
- W2034311206 hasConcept C33923547 @default.
- W2034311206 hasConcept C41008148 @default.
- W2034311206 hasConcept C55493867 @default.
- W2034311206 hasConcept C58166 @default.
- W2034311206 hasConcept C86339819 @default.
- W2034311206 hasConceptScore W2034311206C104317684 @default.
- W2034311206 hasConceptScore W2034311206C119857082 @default.
- W2034311206 hasConceptScore W2034311206C124101348 @default.
- W2034311206 hasConceptScore W2034311206C126255220 @default.
- W2034311206 hasConceptScore W2034311206C154945302 @default.
- W2034311206 hasConceptScore W2034311206C158448853 @default.
- W2034311206 hasConceptScore W2034311206C17020691 @default.