Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034345721> ?p ?o ?g. }
- W2034345721 endingPage "163" @default.
- W2034345721 startingPage "152" @default.
- W2034345721 abstract "We have developed an approach for using “presence” data to construct habitat models. Presence data are those that indicate locations where the target organism is observed to occur, but that cannot be used to define locations where the organism does not occur. Surveys of highly mobile vertebrates often yield these kinds of data. Models developed through our approach yield predictions of the amount and the spatial distribution of good-quality habitat for the target species. This approach was developed primarily for use in a GIS context; thus, the models are spatially explicit and have the potential to be applied over large areas. Our method consists of two primary steps. In the first step, we identify an optimal range of values for each habitat variable to be used as a predictor in the model. To find these ranges, we employ the concept of maximizing the difference between cumulative distribution functions of (1) the values of a habitat variable at the observed presence locations of the target organism, and (2) the values of that habitat variable for all locations across a study area. In the second step, multivariate models of good habitat are constructed by combining these ranges of values, using the Boolean operators “and” and “or.” We use an approach similar to forward stepwise regression to select the best overall model. We demonstrate the use of this method by developing species-specific habitat models for nine forest-breeding songbirds (e.g., Cerulean Warbler, Scarlet Tanager, Wood Thrush) studied in southern Ohio. These models are based on species’ microhabitat preferences for moisture and vegetation characteristics that can be predicted primarily through the use of abiotic variables. We use slope, land surface morphology, land surface curvature, water flow accumulation downhill, and an integrated moisture index, in conjunction with a land-cover classification that identifies forest/nonforest, to develop these models. The performance of these models was evaluated with an independent data set. Our tests showed that the models performed better than random at identifying where the birds occurred and provided useful information for predicting the amount and spatial distribution of good habitat for the birds we studied. In addition, we generally found positive correlations between the amount of habitat, as predicted by the models, and the number of territories within a given area. This added component provides the possibility, ultimately, of being able to estimate population sizes. Our models represent useful tools for resource managers who are interested in assessing the impacts of alternative management plans that could alter or remove habitat for these birds." @default.
- W2034345721 created "2016-06-24" @default.
- W2034345721 creator A5010391151 @default.
- W2034345721 creator A5058139966 @default.
- W2034345721 date "1999-02-01" @default.
- W2034345721 modified "2023-09-29" @default.
- W2034345721 title "A GIS MODELING METHOD APPLIED TO PREDICTING FOREST SONGBIRD HABITAT" @default.
- W2034345721 cites W1480145469 @default.
- W2034345721 cites W1967759959 @default.
- W2034345721 cites W1981422546 @default.
- W2034345721 cites W1994059257 @default.
- W2034345721 cites W1995719999 @default.
- W2034345721 cites W2011457049 @default.
- W2034345721 cites W2016281273 @default.
- W2034345721 cites W2022717594 @default.
- W2034345721 cites W2028326707 @default.
- W2034345721 cites W2030514321 @default.
- W2034345721 cites W2031733337 @default.
- W2034345721 cites W2033179522 @default.
- W2034345721 cites W2048463265 @default.
- W2034345721 cites W2050672452 @default.
- W2034345721 cites W2051098790 @default.
- W2034345721 cites W2061655808 @default.
- W2034345721 cites W2075027872 @default.
- W2034345721 cites W2081964130 @default.
- W2034345721 cites W2099571665 @default.
- W2034345721 cites W2117445811 @default.
- W2034345721 cites W2129106867 @default.
- W2034345721 cites W2134637060 @default.
- W2034345721 cites W2323351215 @default.
- W2034345721 cites W2324735093 @default.
- W2034345721 cites W2325210896 @default.
- W2034345721 cites W2331150084 @default.
- W2034345721 cites W2332964302 @default.
- W2034345721 doi "https://doi.org/10.1890/1051-0761(1999)009[0152:agmmat]2.0.co;2" @default.
- W2034345721 hasPublicationYear "1999" @default.
- W2034345721 type Work @default.
- W2034345721 sameAs 2034345721 @default.
- W2034345721 citedByCount "122" @default.
- W2034345721 countsByYear W20343457212012 @default.
- W2034345721 countsByYear W20343457212013 @default.
- W2034345721 countsByYear W20343457212014 @default.
- W2034345721 countsByYear W20343457212015 @default.
- W2034345721 countsByYear W20343457212017 @default.
- W2034345721 countsByYear W20343457212018 @default.
- W2034345721 countsByYear W20343457212019 @default.
- W2034345721 countsByYear W20343457212020 @default.
- W2034345721 crossrefType "journal-article" @default.
- W2034345721 hasAuthorship W2034345721A5010391151 @default.
- W2034345721 hasAuthorship W2034345721A5058139966 @default.
- W2034345721 hasConcept C132124917 @default.
- W2034345721 hasConcept C134306372 @default.
- W2034345721 hasConcept C159985019 @default.
- W2034345721 hasConcept C166957645 @default.
- W2034345721 hasConcept C182365436 @default.
- W2034345721 hasConcept C185933670 @default.
- W2034345721 hasConcept C18903297 @default.
- W2034345721 hasConcept C192562407 @default.
- W2034345721 hasConcept C204323151 @default.
- W2034345721 hasConcept C205649164 @default.
- W2034345721 hasConcept C2777400135 @default.
- W2034345721 hasConcept C2779343474 @default.
- W2034345721 hasConcept C2779600091 @default.
- W2034345721 hasConcept C33923547 @default.
- W2034345721 hasConcept C86803240 @default.
- W2034345721 hasConceptScore W2034345721C132124917 @default.
- W2034345721 hasConceptScore W2034345721C134306372 @default.
- W2034345721 hasConceptScore W2034345721C159985019 @default.
- W2034345721 hasConceptScore W2034345721C166957645 @default.
- W2034345721 hasConceptScore W2034345721C182365436 @default.
- W2034345721 hasConceptScore W2034345721C185933670 @default.
- W2034345721 hasConceptScore W2034345721C18903297 @default.
- W2034345721 hasConceptScore W2034345721C192562407 @default.
- W2034345721 hasConceptScore W2034345721C204323151 @default.
- W2034345721 hasConceptScore W2034345721C205649164 @default.
- W2034345721 hasConceptScore W2034345721C2777400135 @default.
- W2034345721 hasConceptScore W2034345721C2779343474 @default.
- W2034345721 hasConceptScore W2034345721C2779600091 @default.
- W2034345721 hasConceptScore W2034345721C33923547 @default.
- W2034345721 hasConceptScore W2034345721C86803240 @default.
- W2034345721 hasIssue "1" @default.
- W2034345721 hasLocation W20343457211 @default.
- W2034345721 hasOpenAccess W2034345721 @default.
- W2034345721 hasPrimaryLocation W20343457211 @default.
- W2034345721 hasRelatedWork W1525836516 @default.
- W2034345721 hasRelatedWork W2034345721 @default.
- W2034345721 hasRelatedWork W2045688764 @default.
- W2034345721 hasRelatedWork W2137603791 @default.
- W2034345721 hasRelatedWork W2172007586 @default.
- W2034345721 hasRelatedWork W2181500419 @default.
- W2034345721 hasRelatedWork W2954169836 @default.
- W2034345721 hasRelatedWork W3043218170 @default.
- W2034345721 hasRelatedWork W3088997660 @default.
- W2034345721 hasRelatedWork W4251936623 @default.
- W2034345721 hasVolume "9" @default.
- W2034345721 isParatext "false" @default.
- W2034345721 isRetracted "false" @default.
- W2034345721 magId "2034345721" @default.