Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034353669> ?p ?o ?g. }
- W2034353669 endingPage "1465" @default.
- W2034353669 startingPage "1451" @default.
- W2034353669 abstract "In this paper the use of neural networks for fitting complex kinetic data is discussed. To assess the validity of the approach two different neural network architectures are compared with the traditional kinetic identification methods for two cases: the homogeneous esterification reaction between propionic anhydride and 2-butanol, catalysed by sulphuric acid, and the heterogeneous liquid-liquid toluene mononitration by mixed acid. A large set of experimental data obtained by adiabatic and heat flux calorimetry and by gas chromatography is used for the training of the neural networks. The results indicate that the neural network approach can be used to deal with the fitting of complex kinetic data to obtain an approximate reaction rate function in a limited amount of time, which can be used for design improvement or optimisation when, owing to small production levels or time constraints, it is not possible to develop a detailed kinetic analysis." @default.
- W2034353669 created "2016-06-24" @default.
- W2034353669 creator A5048216245 @default.
- W2034353669 creator A5059491643 @default.
- W2034353669 creator A5085565913 @default.
- W2034353669 creator A5086056602 @default.
- W2034353669 date "1996-01-01" @default.
- W2034353669 modified "2023-09-30" @default.
- W2034353669 title "The use of neural networks for fitting complex kinetic data" @default.
- W2034353669 cites W1963885199 @default.
- W2034353669 cites W1964176878 @default.
- W2034353669 cites W1971735090 @default.
- W2034353669 cites W1977307800 @default.
- W2034353669 cites W1985759250 @default.
- W2034353669 cites W1992301222 @default.
- W2034353669 cites W1997078125 @default.
- W2034353669 cites W2000045409 @default.
- W2034353669 cites W2003454866 @default.
- W2034353669 cites W2005791892 @default.
- W2034353669 cites W2018757741 @default.
- W2034353669 cites W2039816225 @default.
- W2034353669 cites W2040033809 @default.
- W2034353669 cites W2056375890 @default.
- W2034353669 cites W2058816223 @default.
- W2034353669 cites W2069029315 @default.
- W2034353669 cites W2084164405 @default.
- W2034353669 cites W2093265863 @default.
- W2034353669 cites W2103496339 @default.
- W2034353669 cites W2137983211 @default.
- W2034353669 cites W2147912439 @default.
- W2034353669 cites W2171277043 @default.
- W2034353669 cites W2171935366 @default.
- W2034353669 cites W2331215861 @default.
- W2034353669 cites W2747173866 @default.
- W2034353669 cites W4247824031 @default.
- W2034353669 cites W65738273 @default.
- W2034353669 doi "https://doi.org/10.1016/0098-1354(95)00231-6" @default.
- W2034353669 hasPublicationYear "1996" @default.
- W2034353669 type Work @default.
- W2034353669 sameAs 2034353669 @default.
- W2034353669 citedByCount "66" @default.
- W2034353669 countsByYear W20343536692012 @default.
- W2034353669 countsByYear W20343536692013 @default.
- W2034353669 countsByYear W20343536692014 @default.
- W2034353669 countsByYear W20343536692015 @default.
- W2034353669 countsByYear W20343536692016 @default.
- W2034353669 countsByYear W20343536692017 @default.
- W2034353669 countsByYear W20343536692018 @default.
- W2034353669 countsByYear W20343536692019 @default.
- W2034353669 countsByYear W20343536692020 @default.
- W2034353669 countsByYear W20343536692021 @default.
- W2034353669 countsByYear W20343536692022 @default.
- W2034353669 countsByYear W20343536692023 @default.
- W2034353669 crossrefType "journal-article" @default.
- W2034353669 hasAuthorship W2034353669A5048216245 @default.
- W2034353669 hasAuthorship W2034353669A5059491643 @default.
- W2034353669 hasAuthorship W2034353669A5085565913 @default.
- W2034353669 hasAuthorship W2034353669A5086056602 @default.
- W2034353669 hasBestOaLocation W20343536692 @default.
- W2034353669 hasConcept C109663097 @default.
- W2034353669 hasConcept C121332964 @default.
- W2034353669 hasConcept C135889238 @default.
- W2034353669 hasConcept C154945302 @default.
- W2034353669 hasConcept C185592680 @default.
- W2034353669 hasConcept C186060115 @default.
- W2034353669 hasConcept C202270520 @default.
- W2034353669 hasConcept C41008148 @default.
- W2034353669 hasConcept C50644808 @default.
- W2034353669 hasConcept C58489278 @default.
- W2034353669 hasConcept C59070134 @default.
- W2034353669 hasConcept C62520636 @default.
- W2034353669 hasConcept C86803240 @default.
- W2034353669 hasConcept C97355855 @default.
- W2034353669 hasConceptScore W2034353669C109663097 @default.
- W2034353669 hasConceptScore W2034353669C121332964 @default.
- W2034353669 hasConceptScore W2034353669C135889238 @default.
- W2034353669 hasConceptScore W2034353669C154945302 @default.
- W2034353669 hasConceptScore W2034353669C185592680 @default.
- W2034353669 hasConceptScore W2034353669C186060115 @default.
- W2034353669 hasConceptScore W2034353669C202270520 @default.
- W2034353669 hasConceptScore W2034353669C41008148 @default.
- W2034353669 hasConceptScore W2034353669C50644808 @default.
- W2034353669 hasConceptScore W2034353669C58489278 @default.
- W2034353669 hasConceptScore W2034353669C59070134 @default.
- W2034353669 hasConceptScore W2034353669C62520636 @default.
- W2034353669 hasConceptScore W2034353669C86803240 @default.
- W2034353669 hasConceptScore W2034353669C97355855 @default.
- W2034353669 hasIssue "12" @default.
- W2034353669 hasLocation W20343536691 @default.
- W2034353669 hasLocation W20343536692 @default.
- W2034353669 hasOpenAccess W2034353669 @default.
- W2034353669 hasPrimaryLocation W20343536691 @default.
- W2034353669 hasRelatedWork W2076354121 @default.
- W2034353669 hasRelatedWork W2099862635 @default.
- W2034353669 hasRelatedWork W2132885281 @default.
- W2034353669 hasRelatedWork W2145103130 @default.
- W2034353669 hasRelatedWork W2173249791 @default.
- W2034353669 hasRelatedWork W2748952813 @default.