Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034359188> ?p ?o ?g. }
- W2034359188 endingPage "802" @default.
- W2034359188 startingPage "785" @default.
- W2034359188 abstract "Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and nonlinear regression approach were applied to predict the compressive strength of ready-mixed soil material containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil (e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical pulse velocity-strength correlation was established by regression method. Next, three topologies of neural network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models are back-propagation feed-forward networks, and the other one is radial basis neural network. The results show that the compressive strength of ready-mixed soil material can be well-predicted from neural networks. Among all currently proposed neural network models, the ANN-I gives the best prediction because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better evaluation than interpolated from pulse velocity only." @default.
- W2034359188 created "2016-06-24" @default.
- W2034359188 creator A5000779732 @default.
- W2034359188 creator A5023115591 @default.
- W2034359188 creator A5033686184 @default.
- W2034359188 date "2013-12-25" @default.
- W2034359188 modified "2023-09-25" @default.
- W2034359188 title "Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network" @default.
- W2034359188 cites W1532221965 @default.
- W2034359188 cites W1577484784 @default.
- W2034359188 cites W1976213807 @default.
- W2034359188 cites W1977468533 @default.
- W2034359188 cites W1989119078 @default.
- W2034359188 cites W1990750674 @default.
- W2034359188 cites W2003523978 @default.
- W2034359188 cites W2004245972 @default.
- W2034359188 cites W2020488014 @default.
- W2034359188 cites W2025746666 @default.
- W2034359188 cites W2028355458 @default.
- W2034359188 cites W2035636907 @default.
- W2034359188 cites W2049251194 @default.
- W2034359188 cites W2050500357 @default.
- W2034359188 cites W2076456685 @default.
- W2034359188 cites W2093603648 @default.
- W2034359188 cites W2094807568 @default.
- W2034359188 cites W2109677652 @default.
- W2034359188 cites W2123474505 @default.
- W2034359188 cites W2124776405 @default.
- W2034359188 cites W2148138104 @default.
- W2034359188 cites W2183914516 @default.
- W2034359188 cites W2283270802 @default.
- W2034359188 cites W2285257517 @default.
- W2034359188 cites W2318950791 @default.
- W2034359188 cites W2321324628 @default.
- W2034359188 cites W2326230821 @default.
- W2034359188 cites W2597792629 @default.
- W2034359188 cites W2784885005 @default.
- W2034359188 cites W30151681 @default.
- W2034359188 cites W609008727 @default.
- W2034359188 cites W627187466 @default.
- W2034359188 cites W8412915 @default.
- W2034359188 cites W2030109855 @default.
- W2034359188 doi "https://doi.org/10.12989/cac.2013.12.6.785" @default.
- W2034359188 hasPublicationYear "2013" @default.
- W2034359188 type Work @default.
- W2034359188 sameAs 2034359188 @default.
- W2034359188 citedByCount "6" @default.
- W2034359188 countsByYear W20343591882015 @default.
- W2034359188 countsByYear W20343591882017 @default.
- W2034359188 countsByYear W20343591882019 @default.
- W2034359188 countsByYear W20343591882021 @default.
- W2034359188 crossrefType "journal-article" @default.
- W2034359188 hasAuthorship W2034359188A5000779732 @default.
- W2034359188 hasAuthorship W2034359188A5023115591 @default.
- W2034359188 hasAuthorship W2034359188A5033686184 @default.
- W2034359188 hasConcept C119857082 @default.
- W2034359188 hasConcept C121332964 @default.
- W2034359188 hasConcept C127413603 @default.
- W2034359188 hasConcept C132976073 @default.
- W2034359188 hasConcept C155032097 @default.
- W2034359188 hasConcept C158622935 @default.
- W2034359188 hasConcept C159985019 @default.
- W2034359188 hasConcept C187320778 @default.
- W2034359188 hasConcept C192562407 @default.
- W2034359188 hasConcept C2780021121 @default.
- W2034359188 hasConcept C30407753 @default.
- W2034359188 hasConcept C33819350 @default.
- W2034359188 hasConcept C41008148 @default.
- W2034359188 hasConcept C48921125 @default.
- W2034359188 hasConcept C50644808 @default.
- W2034359188 hasConcept C523993062 @default.
- W2034359188 hasConcept C62520636 @default.
- W2034359188 hasConceptScore W2034359188C119857082 @default.
- W2034359188 hasConceptScore W2034359188C121332964 @default.
- W2034359188 hasConceptScore W2034359188C127413603 @default.
- W2034359188 hasConceptScore W2034359188C132976073 @default.
- W2034359188 hasConceptScore W2034359188C155032097 @default.
- W2034359188 hasConceptScore W2034359188C158622935 @default.
- W2034359188 hasConceptScore W2034359188C159985019 @default.
- W2034359188 hasConceptScore W2034359188C187320778 @default.
- W2034359188 hasConceptScore W2034359188C192562407 @default.
- W2034359188 hasConceptScore W2034359188C2780021121 @default.
- W2034359188 hasConceptScore W2034359188C30407753 @default.
- W2034359188 hasConceptScore W2034359188C33819350 @default.
- W2034359188 hasConceptScore W2034359188C41008148 @default.
- W2034359188 hasConceptScore W2034359188C48921125 @default.
- W2034359188 hasConceptScore W2034359188C50644808 @default.
- W2034359188 hasConceptScore W2034359188C523993062 @default.
- W2034359188 hasConceptScore W2034359188C62520636 @default.
- W2034359188 hasIssue "6" @default.
- W2034359188 hasLocation W20343591881 @default.
- W2034359188 hasOpenAccess W2034359188 @default.
- W2034359188 hasPrimaryLocation W20343591881 @default.
- W2034359188 hasRelatedWork W20072296 @default.
- W2034359188 hasRelatedWork W2029491254 @default.
- W2034359188 hasRelatedWork W2359555684 @default.
- W2034359188 hasRelatedWork W2983577075 @default.
- W2034359188 hasRelatedWork W3010175947 @default.