Matches in SemOpenAlex for { <https://semopenalex.org/work/W2034367397> ?p ?o ?g. }
- W2034367397 endingPage "669" @default.
- W2034367397 startingPage "663" @default.
- W2034367397 abstract "Mass spectrometry imaging (MSI) provides molecules composition information and corresponding spatial information on complex biological surfaces in a single experiment without label. It is a hotspot for getting significant amount of attention in the mass spectrometric community currently. However, the MSI data are large and complexity, which makes the reduction and feature extraction difficult. Some multivariate statistical analysis methods, for example, the famous principal component analysis (PCA), were developed to address this issue. But the results with negative value are hard to be interpreted as features about molecules. In this study, a feature extraction approach for MSI data by applying non-negative matrix factorization was developed. It could extract single molecules composition feature and corresponding distribution (basic images) feature, and further integrated the basic images to create a profile showing the whole sample by RGB (red, green and blue) color overlaid model clearly. The MSI data of a mouse brain section was used to test the efficiency of this approach. The white matter regions, the grey matter regions and the background regions were clearly observed and the corresponding molecules mass spectrums were extracted, which indicated that the approach was easier than PCA approach in results interpreting. Moreover, the MSI data of a human cancerous and adjacent normal bladder tissue sections on the same sample target were analyzed by the approach, and the cancerous regions and the normal regions were clearly differentiated. The software developed in this paper could be downloaded from the website http://www.msimaging.net." @default.
- W2034367397 created "2016-06-24" @default.
- W2034367397 creator A5004320569 @default.
- W2034367397 creator A5042149640 @default.
- W2034367397 creator A5049160504 @default.
- W2034367397 creator A5055008589 @default.
- W2034367397 creator A5060842938 @default.
- W2034367397 creator A5063879522 @default.
- W2034367397 date "2012-05-01" @default.
- W2034367397 modified "2023-10-14" @default.
- W2034367397 title "Feature Extraction Approach for Mass Spectrometry Imaging Data Using Non-negative Matrix Factorization" @default.
- W2034367397 cites W1902027874 @default.
- W2034367397 cites W1965011257 @default.
- W2034367397 cites W1981235033 @default.
- W2034367397 cites W1987355385 @default.
- W2034367397 cites W1996713544 @default.
- W2034367397 cites W2003589213 @default.
- W2034367397 cites W2012972751 @default.
- W2034367397 cites W2019571295 @default.
- W2034367397 cites W2038699723 @default.
- W2034367397 cites W2040879982 @default.
- W2034367397 cites W2047155069 @default.
- W2034367397 cites W2068880737 @default.
- W2034367397 cites W2071598883 @default.
- W2034367397 cites W2072974551 @default.
- W2034367397 cites W2121767302 @default.
- W2034367397 cites W2124990430 @default.
- W2034367397 cites W2127956095 @default.
- W2034367397 cites W2134331076 @default.
- W2034367397 cites W2143501283 @default.
- W2034367397 cites W2149164619 @default.
- W2034367397 cites W2151443697 @default.
- W2034367397 cites W2153475143 @default.
- W2034367397 cites W2165041849 @default.
- W2034367397 cites W4247502463 @default.
- W2034367397 doi "https://doi.org/10.1016/s1872-2040(11)60544-6" @default.
- W2034367397 hasPublicationYear "2012" @default.
- W2034367397 type Work @default.
- W2034367397 sameAs 2034367397 @default.
- W2034367397 citedByCount "17" @default.
- W2034367397 countsByYear W20343673972014 @default.
- W2034367397 countsByYear W20343673972015 @default.
- W2034367397 countsByYear W20343673972016 @default.
- W2034367397 countsByYear W20343673972017 @default.
- W2034367397 countsByYear W20343673972018 @default.
- W2034367397 countsByYear W20343673972020 @default.
- W2034367397 countsByYear W20343673972021 @default.
- W2034367397 countsByYear W20343673972022 @default.
- W2034367397 countsByYear W20343673972023 @default.
- W2034367397 crossrefType "journal-article" @default.
- W2034367397 hasAuthorship W2034367397A5004320569 @default.
- W2034367397 hasAuthorship W2034367397A5042149640 @default.
- W2034367397 hasAuthorship W2034367397A5049160504 @default.
- W2034367397 hasAuthorship W2034367397A5055008589 @default.
- W2034367397 hasAuthorship W2034367397A5060842938 @default.
- W2034367397 hasAuthorship W2034367397A5063879522 @default.
- W2034367397 hasConcept C119857082 @default.
- W2034367397 hasConcept C121332964 @default.
- W2034367397 hasConcept C138885662 @default.
- W2034367397 hasConcept C152671427 @default.
- W2034367397 hasConcept C153180895 @default.
- W2034367397 hasConcept C154945302 @default.
- W2034367397 hasConcept C158693339 @default.
- W2034367397 hasConcept C161584116 @default.
- W2034367397 hasConcept C162356407 @default.
- W2034367397 hasConcept C185592680 @default.
- W2034367397 hasConcept C186060115 @default.
- W2034367397 hasConcept C24066741 @default.
- W2034367397 hasConcept C27438332 @default.
- W2034367397 hasConcept C2776401178 @default.
- W2034367397 hasConcept C41008148 @default.
- W2034367397 hasConcept C41895202 @default.
- W2034367397 hasConcept C42355184 @default.
- W2034367397 hasConcept C43617362 @default.
- W2034367397 hasConcept C52622490 @default.
- W2034367397 hasConcept C62520636 @default.
- W2034367397 hasConcept C82990744 @default.
- W2034367397 hasConcept C86803240 @default.
- W2034367397 hasConceptScore W2034367397C119857082 @default.
- W2034367397 hasConceptScore W2034367397C121332964 @default.
- W2034367397 hasConceptScore W2034367397C138885662 @default.
- W2034367397 hasConceptScore W2034367397C152671427 @default.
- W2034367397 hasConceptScore W2034367397C153180895 @default.
- W2034367397 hasConceptScore W2034367397C154945302 @default.
- W2034367397 hasConceptScore W2034367397C158693339 @default.
- W2034367397 hasConceptScore W2034367397C161584116 @default.
- W2034367397 hasConceptScore W2034367397C162356407 @default.
- W2034367397 hasConceptScore W2034367397C185592680 @default.
- W2034367397 hasConceptScore W2034367397C186060115 @default.
- W2034367397 hasConceptScore W2034367397C24066741 @default.
- W2034367397 hasConceptScore W2034367397C27438332 @default.
- W2034367397 hasConceptScore W2034367397C2776401178 @default.
- W2034367397 hasConceptScore W2034367397C41008148 @default.
- W2034367397 hasConceptScore W2034367397C41895202 @default.
- W2034367397 hasConceptScore W2034367397C42355184 @default.
- W2034367397 hasConceptScore W2034367397C43617362 @default.
- W2034367397 hasConceptScore W2034367397C52622490 @default.
- W2034367397 hasConceptScore W2034367397C62520636 @default.